

A SUSTAINABLE PRACTICES WORKBOOK FOR WINE GRAPE GROWING IN MARYLAND

A SUSTAINABLE PRACTICES WORKBOOK FOR WINE GRAPE GROWING IN MARYLAND

Maryland Grape Growers

Association

BRUCE PERRYGO

COORDINATOR MARYLAND GRAPE GROWERS ASSOCIATION

DR. JOSEPH FIOLA SPECIALIST IN VITICULTURE AND SMALL FRUIT, UNIVERSITY OF MARYLAND EXTENSION

WADE HAMPTON PRINCE GEORGE'S CONSERVATION DISTRICT MARYLAND GRAPE GROWERS ASSOCIATION RESEARCH & EDUCATION CHAIR

DEAN JONES POINT O'GRAPE VINEYARDS TREASURER MARYLAND GRAPE GROWERS ASSOCIATION

ASHLEY MULLOY EDEN MILL VINEYARDS MARYLAND GRAPE GROWERS ASSOCIATION VICE PRESIDENT

Ron Wates Boordy Vineyards, Vineyard Manager

BOB WHITE Robin Hill Farm Vineyards, Vineyard Manager Maryland Grape Growers Association President

Photography credit: Bruce Perrygo, MGGA member

TABLE OF CONTENTS

Introductory	Sections
--------------	----------

Workbook Steering Committee	3
Introduction	4
Preface by Bruce Perrygo	5
How to Use This Workbook	6
Example Question	7
Workbook Sections	
Soil Management	8
Determining Soil Leaching and Runoff Potential	9
Management Considerations for Sites with High Leaching	
Or Runoff Potential	12
Preplant Considerations	14
Established Vineyard Considerations	20
Row Middle Management	23
Estimating Available Nitrogen Supplied by Cover Crops	29
Benefits of Using Cover Crops	30
Calculation Compost Application on Vine Rows	32
Benefits of Soil Organic Matter	32
Nutrition Management	35
Monitoring Nutrient Status	36
Nitrogen Management Practices	37
Macronutrient Management Practices –	
Calcium, Magnesium, Potassium	42
Micronutrient Management Practices – Boron, Manganese, Zinc	44
Fertilizer Storage	45
Vineyard Management	47
Plant Material and Planting	48
Vineyard Management	50
Crop Management	54
Maintaining Vineyard Profitability	57

Irrigation Management	58
Irrigation System Maintenance	60
Irrigation Scheduling	62
Weed Management	66
Pest Management	74
Pesticide Application Equipment	75
Pruning and Dormant Vineyard Practices	79
Disease Management	83
Insect and Mite Management	92
Toxicity of Vineyard Pesticides to Typhlodromus pyri	97
Pesticide Management	102
Pesticide Storage	103
Loading and Mixing Practices	105
Pesticide Containers	109
Pesticide Use	110
Continuing Education	112
Action Plans	117
Action Plan Example	118
Action Plan Template	113
References	120

Bruce Perrygo Coordinator, Maryland Grape Growers Association

Dr. Joseph Fiola Specialist in Viticulture and Small Fruit, University of Maryland Extension

Wade Hampton Prince George's Conservation Dist., MGGA Research & Education Chair

Dean Jones Point O'Grape Vineyards, Treasurer Maryland Grape Growers Association

Ashley Mulloy Eden Mill Vineyards, MGGA Vice President

Ron Wates Boordy Vineyards, Vineyard Manager

Bob White Robin Hill Farm, Vineyard Manager, MGGA President

Special thanks to: Dr. Tim Martinson Cornell University, Senior Extension Associate, Viticulture

The Staff of Cornell University Cooperative Extension

Funded by a grant from:

The United States Department of Agriculture through the Specialty Crop Block Grant program of the Maryland Department of Agriculture The Maryland Grape Growers Association

INTRODUCTION

For many, the Chesapeake Bay defines the state of Maryland. There is keen interest in preserving and protecting the waters of the Bay and the fish, crabs, oysters, and other creatures that dwell there. Millions of dollars have been spent by local and state governments as well as the federal government to restore this amazing resource and to protect it for future generations.

Maryland's farmers are major participants in these efforts. Wine grape growing is one of the fastest growing agricultural sectors in the state with new vineyards being planted each year. Vineyards can now be found in every county. Wine grape farmers are eager to do their part to "Save the Bay".

Several members of the Maryland Grape Growers Association expressed interest in applying sustainable viticulture practices to grape growing. Due to that interest, Dr. Timothy Martinson, Senior Extension Associate in Viticulture, Cornell University was asked to make a presentation at the Maryland Grape Growers Association sponsored wine/grape industry, Annual Conference and Seminars.

Dr. Martinson's presentation, **Sustainable Viticulture: Promotion and Practices** was enthusiastically received. Many members of MGGA requested that the Association provide more guidance in sustainable practices for their Maryland Vineyards.

Maryland Grape Grower Association leadership organized a group of members to pursue ways of promoting sustainable viticulture practices, especially for Maryland wine grape growers. It was decided that the best way to reach that goal was to adapt the **New York Guide to Sustainable Viticulture Practice** for use in Maryland.

A Specialty Crop Block Grant from the United States Department of Agriculture was applied for through the Maryland Department of Agriculture. That grant was awarded to the Maryland Growers Association.

Soon thereafter, members of the grant committee were struck with major health issues and other life changing challenges and were not able to proceed with the program. Upon becoming MGGA president, Bob White was able to reorganize the grant committee. Now after some setbacks and more time than anticipated, a workbook designed specifically for Maryland is now available, **A Sustainable Practices Workbook for Wine Grape Growing in Maryland.**

The Maryland Grape Growers Association hopes that this workbook will provide information, and resources to aid Maryland's wine grape growers to farm in a sustainable manner. MGGA encourages all wine grape growers to make use of the information supplied here to become better stewards of our land and the Chesapeake Bay.

PREFACE

This workbook is intended to help producers meet the increasing environmental and social challenges facing the wine/grape industry. There is a growing awareness of the effects the actions of each of us has on the Chesapeake Bay. This natural resource is a living, "protein factory" that in many ways defines the state of Maryland. The general public is demanding that steps be taken to protect this treasure.

As the concept of sustainable agriculture has grown, the agricultural community has agreed that practices must be developed that are economically, environmentally, and socially sustainable.

This workbook is designed to allow wine grape growers to assess their vineyard's position regarding sustainability. To help producers improve practices, it is important that this workbook serve as a measurement, as well as an educational, tool. It is to aid the individual grower. Its purpose is not to compare one grower's practices with another.

As time goes on there will be new and evolving sustainable practices. It is important that growers keenly keep aware of these new developments and incorporate them into their vineyard practices and routines. As we become good stewards of our resources, we can be profitable today and leave a legacy for generations to come.

> BRUCE PERRYGO COORDINATOR MARYLAND GRAPE GROWERS ASSOCIATION

This workbook contains questions in 8 sections. The questions address issues or practices that are important to good vineyard management. Each question is followed by four (4) options ordered on a sustainable scale, with "1" being the most desired (i.e. most sustainable) option and "4" being the least. The questions are designed to help you evaluate all areas of your current management practices, with each chapter covering a different production area. A sample question is presented on page 7.

Questions are often followed by a short sidebar designed to further explain the rationale behind the promoted practices and provide additional resources related to the topics. When reading through the possible answer options, we recommend starting at option #4 and moving toward option #1, choosing the option that your current practice fully encompasses. If you find that your present practice comprises part, but not all, of an answer, choose the higher score. For instance, if you presently perform only two of the three practices necessary to assess yourself a score of "2" on a certain question, score yourself a "3" on that question. Your scores will provide a baseline from which to develop an action plan and assess improvement after implementation of your plan. It is important to note that this is not a test and there are no "wrong" answers. Simply choose the answer that best describes what you do. In answering the questions, it may be helpful to think of a particular vineyard block rather than a range of different blocks and varieties. We recognize that different varieties may require different management approaches.

Some of the questions in the workbook may not be applicable to your farm, so you can skip the questions that do not apply to you and mark "NA" on the score sheet. Canopy management questions applicable to *vinifera* grapes, for example, will not be applicable to Concord production. Similarly, if you do not use irrigation, you can skip the irrigation section.

ACTION PLAN. Once you have completed the workbook, the next step is to develop an action plan based on the results of your self-assessment that will address the practices that you believe you can effectively modify within the financial and management capacity of your farm. Concentrate on the issues where you scored three or four, with the goal of modifying your practices to reach the more sustainable one or two rating. The action plan is yours, and only you will know what is practical and possible on your farm.

Please note that this workbook is not a production guide. Managing vineyards is a complex enterprise involving numerous site and variety-specific practices and weather conditions, along with skill and experience in making decisions. Not all questions will apply to your vineyard, nor are the options listed for management the only possible solutions. You are the person most familiar with your site and most suited to deciding what is applicable to your situation.

NITROGEN (N) MANAGEMENT PRACTICES

					
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
When is N fertilizer soil-	N is applied during the	All N is applied during	N is applied up to 2	N is applied >2 weeks	
applied in spring?	period of maximum	the period of	weeks prior to budbreak	prior to budbreak.	
	uptake - budbreak to	maximum uptake -	when vines are still		
	fruit set.	budbreak to fruit set.	dormant.		
	AND	AND	OR		
	Split applications are	Split applications are	All N is applied in the		2
	used with 30-50% of	not used.	period between fruit set		
	the N applied		and veraison.		
	prebloom and the				
	remainder applied				
	postbloom.				

There is little absorption of N by roots prior to budbreak. The soil is cold and roots are inactive. Early vine growth depends almost entirely on N stored in the woody parts of the vine. It is unclear whether pre-budbreak application release organic fertilizers confers an advantage in terms of N availability to the plant.

Example:

Our grower applies nitrogen in the spring in one application about 1 ½ weeks before bloom. Based on this practice, the grower selects "2". Self-assessment scores can be recorded in the "YOUR RANK" column following each question and/or on the Workbook Scoresheet included with this workbook. In deciding whether or not to modify current

practice to reach the "1" level, the grower will have to consider whether the benefits (e.g. increased efficiency in timing and rates of nitrogen fertilizer application and the associated potential savings) outweigh the drawbacks (e.g. increased labor, tractor use and other potential costs).

I. SOIL MANAGEMENT

Vineyard sites in Maryland vary in slope, soil texture, depth, parent materials, pH, and elevation. There are three main geomorphic regions in the state, each with its own types of soils and climates.

The Coastal Plain is the area that surrounds the Chesapeake from the Atlantic Ocean to the Potomac River and the Fall Line. On the Eastern Shore the land is nearly flat. The Western Shore tends to be somewhat higher with small, rolling hills. Streams meander and are slow moving. Soils in this area are made up of Gravel, Sand, Silt, and Clay.

<u>The Piedmont Region</u> lies to the west and north of the Coastal Plain and extends west to the Blue Ridge. The diverse topography of the region includes rolling hills, plateaus, and ridges. There are narrow valleys with swift, rapidly moving streams. Soils contain schist, gneiss, metabasalt, and phyllite.

The Appalachian Region runs from the Blue Ridge, west to the state's borders. There are mountains and broad plateaus. In the far west, there are mountain ridges nearing 3,000 feet in elevation. Streams run in steep walled, narrow valleys. Much of the region is dominated by limestone, sandstone, shale, and siltstone.

Hillside vineyards are subject to erosion and runoff. Surface runoff carries sediment, nutrients, and pesticides into ponds and streams. Eventually, these make their way into the Chesapeake Bay causing serious degradation to Bay waters, as well as, to the animal and plant life that inhabit it.

Careful management of soils, starting before vines are planted and continuing through the life of the vineyard, is crucial for maintaining vineyard productivity and minimizing runoff of nutrients and pesticides. Questions in this section address runoff and leaching potential, pre-plant vineyard design, soil amendments, soil compaction, soil erosion, the use of cover crops and mulch to manage erosion, and water use in your vineyard.¹

Photography credits: Bruce Perrygo, MGGA member, Dr. Joe Fiola UMD Ext.

¹ Natural Soil Groups of Maryland Maryland Dept. of State Planning 1973

SITE CHARACTERISTICS: DETERMINATION OF SOIL LEACHING AND RUNOFF POTENTIAL

BACKGROUND

- 1. Compare the relative risk of ground and surface water contamination among different vineyard blocks on your farm.
- 2. Identify the vineyard blocks on which you may want to consider using more extensive water protection practices.
- 3. Set priorities for adopting vineyard floor management practices, constructing soil conservation structures, and making changes to nutrient or pesticide management practices.
- 4. Be applicable for both established vineyards and pre-plant situations.

Pages 10-13 will allow you to enumerate and classify the risk potential for each vineyard block. If the assessment shows a high or moderate risk of sedimentation or ground or surface water contamination, you will want to consider possible ways to modify that risk.

If you already know the leaching potential of your soil, you may want to skip to page 14.

VINEYARD SITE CHARACTERISTICS WORKSHEETS - INSTRUCTIONS

- 1. If you know your vineyard's leaching and runoff potential, you may skip this section.
- 2. Use a County Soil Survey of your property to identify soils and slopes present on your land, or ask for assistance from your local Soil and Water Conservation District to obtain a computer-generated map of your property with soils and slopes identified.
- Identify major vineyard blocks or natural divisions with similar soils and slopes. Mark the location of each area on the map. Identify the predominant soil type and average slope in each area.
- 4. From the county soil survey, use information on each soil group to fill out the following table for each vineyard block. This will identify if a block has a high potential to leach pesticides or fertilizers into groundwater or a high potential for surface runoff that may carry fertilizers or pesticides into surface waters.

Soil Hydrologic Group	DESCRIPTION
_	Low runoff potential - high leaching potential.
A	Mostly deep coarse-textured soils such as sandy loams, gravels, coarse gravelly loams.
2	Moderately low runoff potential - moderately high leaching potential.
В	Mostly permeable loams.
a	Moderately high runoff potential - moderately low leaching potential.
C	Mostly fine-to-medium textured soils and/or those with imperfect drainage.
	High runoff potential - low leaching potential.
D	Mostly very fine-textured soils and/or those with poor drainage.

RATING OF RUNOFF/LEACHING POTENTIAL OF VINEYARD BLOCKS

Soil Hydrologic Group	RATING	AVERAGE BLOCK SLOPE	RATING
Α	1	< 3%	1
В	2	3-6%	2
С	З	7-12%	З
D	4	< 12%	4

	Vineyard Block ID	Hydrologic Soil Group Rating	Average Block Slope Rating	Addition of Rating Numbers
1				
2				
3				
4				
5				
6				

Addition of Numbers - Results

2 – 3 = High Leaching Potential. Use caution when making ground-directed herbicide or fertilizer applications especially when heavy rainfall is expected.
 Split applications of nitrogen fertilizers are recommended.

4-5 = Intermediate Conditions. The site may be intermediate in both the risk of runoff and leaching potential. For example, a flat site on heavy clay would likely have less runoff and more leaching than a hillside vineyard.

Similarly, a well-drained, gravelly soil on steep slopes may be subject to both runoff and leaching.

6-8 = High Runoff Potential. Installation of filter strips around vineyards is highly recommended. Delay application of pre-emergence herbicides and fertilizers when >1" of rainfall is forecast.

MANAGEMENT CONSIDERATIONS FOR SITES WITH HIGH LEACHING OR RUNOFF POTENTIAL

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
If vineyard has a high	A management plan is in place			Herbicide, insecticide,	
leaching potential, is a	to reduce the use of pesticides			fungicide, and fertilizer	
plan in place to	and fertilizers with high			applications are made on a	
minimize this risk?	leaching potential, and			cost and need only basis	
	appropriate herbicide			with no consideration to	
	application rates are used to			leaching potential.	
	limit movement.			OR	
	AND			No knowledge of which	
	Nitrogen rates are adjusted by			inputs are most prone to	
	using split applications or			leaching, and herbicide	
	fertigation, and applications of			rates are not adjusted	
	ground-directed fertilizers and			according to soil texture.	
	herbicides are delayed when			OR	
	heavy rains are expected.			No plan is in place to	
				address leaching.	

MANAGEMENT CONSIDERATIONS FOR SITES WITH HIGH LEACHING OR RUNOFF POTENTIAL

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
If vineyard has a high	A conservation plan is in place			Soil conservation practices	
runoff potential, is a	that addresses runoff with			are not considered in	
plan in place to	appropriate soil conservation			vineyard layout and	
mitigate the runoff?	structures (e.g. diversions,			management.	
	filter strips, drainage) and			AND	
	vineyard floor management			Weather conditions and	
	options.			runoff are not considered	
	AND			prior to application of	
	Application of herbicides,			pesticides and fertilizers.	
	fungicides, insecticides, and			(i.e. No management plan	
	fertilizers is delayed if rainfall			exists for reducing erosion	
	is forecasted within the drying			and runoff.)	
	time of the application.				

PREPLANT CONSIDERATIONS						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Are complete soil nutrient analyses done?	Soil analyses are done on all distinct portions of the site, the slope is sampled separately from the flat area and different soil types are sampled separately.	More than one soil analysis is done, but the site is not thoroughly sampled.	Only one complete soil analysis is done.	Only pH is tested: a complete soil analysis is not done. OR No soil analyses are done.		
Are soil samples sent for nematode analysis? (Not applicable for Labrusca growers.)	Prior to planting, samples are collected according to laboratory instructions and sent for nematode analysis.			Nematode analysis is not done.		

For more information on soil sampling, testing, and interpretation, go to:

http://go.umd.edu/SoilTissueNematodeTesting

High nematode populations have been found in some areas of former tobacco cultivation. The dagger nematode Xiphenema index has been found to vector ringspot viruses, a disease of concern for hybrid varieties. Consequently, assessing the soil nematode populations may help to address a later problem. One of the best defenses against nematode injury is excellent early care of the vineyard, as healthy vines are better able to tolerate an infestation than compromised vines.

For more information on nematodes, sampling, and biorenovation, go to: http://go.umd.edu/Biorenovation

1 - Low Risk234 - High RiskYOUR RAIs preplant soil compaction addressed?Soil compaction is directly evaluated.Soil compaction is not directly evaluated.Soil compaction is not directly evaluated.If soils have impermented by the soiling is done the directly evaluated.Broplant subsoiling is NotBroplant subsoiling is	PREPLANT CONSIDERATIONS						
Is preplant soil compactionSoil compaction is directly evaluated.Soil compaction is not directly evaluated.Soil compaction is not directly evaluated.Soil compaction is not directly evaluated.Soil compaction is not directly evaluated.addressed?ANDBUTANDANDIf soils have impermeableSubsoiling is done the Subsoiling is done theBreelant subsoiling is NotBreelant subsoiling is Not		1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
In some inverting entreaseSubscring is done titlePrepriant subscring is NotPrepriant subscring is Notlayers or hard pans, subscring is performed the year prior to planting.year prior to planting.done.not done.ORORSoils are gravelly with no perched water tables or clay layers requiring subscriling.Soils are gravelly with no perched water tables or clay layers requiring subscriling.Soils are less prone to compaction.Soils are in hydrologic classes C and D, which are prone to compaction.	Is preplant soil compaction addressed?	Soil compaction is directly evaluated. AND If soils have impermeable layers or hard pans, subsoiling is performed the year prior to planting. OR Soils are gravelly with no perched water tables or clay layers requiring subsoiling.	Soil compaction is not directly evaluated. BUT Subsoiling is done the year prior to planting.	Soil compaction is not directly evaluated. AND Preplant subsoiling is Not done. AND Soils are well-drained gravels or gravelly loams in hydrologic classes A and B, which are less prone to compaction.	Soil compaction is not directly evaluated. AND Preplant subsoiling is not done. AND Soils have silt or clay layers, and/or perched water tables. OR Soils are in hydrologic classes C and D, which are prone to compaction.		

The need for subsoiling should be judged based on local experience and/or the use of a penetrometer, a device that measures soil compaction. The need for subsoiling should be assessed in consultation with a vineyard consultant, University of Maryland Extension and/or Natural Resources Conservation Service. While preplant subsoiling is not a standard practice, it may be of help on sites with poor drainage.

PREPLANT CONSIDERATIONS						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Are soil pits dug to	If soils are variable, soil	Soil pits are dug at	One soil pit is dug at the	No soil pits are dug prior		
evaluate the soil	pits are dug in a grid	several distinct sites on a	potential vineyard	to planting.		
profile?	pattern. AND Drainage, topsoil depth, and texture are evaluated in each block.	potential property. BUT Drainage, topsoil depth, and texture are evaluated.	property.	AND No evaluation of soil physical properties is made.		
Soil pits allow evaluation of the soil profile in order to better gauge appropriate scion/rootstock choices, spacing, irrigation, trellis design, etc. Preferably all distinct areas on a site will have a pit. They should be done according to recommendations from a vineyard consultant or a University of Maryland Extension and/or Natural Resources Conservation Service district representative. Pits are typically 5-6 ft long x 3-4 ft wide x 4-5 ft deep.						

PREPLANT CONSIDERATIONS							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Are drainage problems addressed?	Soils are well drained to excessively well drained and no tiling is required. OR Pattern tiling is established, with tile lines parallel to rows at an adequate density for the soil texture. AND Tile spacing is appropriate for variety type.	Soils are evaluated and drainage requirements are determined preplant. AND Tile drainage is designed and installed on poorly drained areas or in heavy soils, with tile spacing appropriate for variety type (vinifera may need more than natives to be productive).	No preplant design or evaluation for tiling is done. BUT Tile lines installed in observably wet areas.	Soil drainage is not considered preplant. AND Soils are poorly drained, no tile drainage present even in wet spots and low areas. AND Standing water persists after rainfall.			

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
If necessary, is soil	In the year prior to	In the year prior to	In the spring just before	Soil pH is not adjusted	
pH adjusted?	planting, soil pH is adjusted with lime so the top 16" of soil is approximately 6.5 for V. vinifera, 6.0 for hybrids, and 5.5 for natives. AND If the total amount recommended is >6 tons per acre, the lime is split between two applications	planting, soil pH is adjusted with lime so the top 16" of soil is approximately 6.5 for V. vinifera, 6.0 for hybrids, and 5.5 for natives. AND Lime applications are not split if >6 tons per acre is required.	planting, soil pH is adjusted with lime so the top 16" of soil is approximately 6.5 for <i>V.</i> <i>vinifera</i> , 6.0 for hybrids, and 5.5 for natives. OR Less than 3 tons per acre of lime is applied after planting.	before planting. OR Soil pH is not known. OR More than 3 tons per acre of lime is applied after planting.	
	planting.				

Three major types of grapevines are grown in Maryland: natives, hybrids, and *V. vinifera* types. Native labrusca types are adapted to acid soils, with optimum pH around 5.5. *V. vinifera* grapevines are more adapted to neutral soil pH (6.5-7.0) and can exhibit nutrient deficiencies in acid soils. Interspecific hybrid varieties are hybrids of American (often acid-adapted) *Vitis* spp. and *V. vinifera*, so are thought to have an adaptation to intermediate soil pH (6.0) somewhere between the European and American parents. Although this idea has not been rigorously tested for every hybrid, these guidelines seem to work reasonably well in practice.

Application of lime should be done in the year prior to planting. Additions of large amounts of lime just before planting can induce manganese, potassium, or magnesium deficiencies in vines. Also, lime applied immediately preplant may not have time to react with soil particles.

PREPLANT CONSIDERATIONS						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
For sites with low soil organic matter (< 3% for Coastal, < 2% for Piedmont and Appalachian regions), is additional matter added?	Organic matter is supplied through one of the following methods: Cover crops (particularly with sorghum/sudan hybrids); Compost; or Manure, preferably composted.			Organic matter is not added, particularly on sandy sites.		
How are vineyard rows oriented with respect to slopes?	Vineyard rows run perpendicular to the slope (across slope). OR Slope <u>along rows</u> is < 3%; hill slope is < 12%. AND Direction of slope is uniform.	Vineyard rows run perpendicular to the slope. AND Slope <u>along rows</u> is < 6%; hill slope is < 12%. AND Some side slopes present.	Vineyard rows are perpendicular to the main slope. AND Substantial side slopes are present (slope direction is not uniform).	Vineyard rows run up and down the slope. AND Slopes are >6%.		

Vineyard rows can reduce the effective slope by channeling water across it. Such protection is less effective when the slope *along vineyard rows* exceeds 3%, when slope direction is not uniform (side hills present), or when the main slope exceeds 12%.

cording Soil tests are never	
t taken, and lime is ions. added systematically, or not at all. in one n.	
i r	in one n.

ESTABLISHED VINEYARD CONSIDERATIONS							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
How is soil compaction addressed, if evident?	Equipment is chosen or modified to minimize compaction (e.g. lightest equipment possible, wider or larger diameter tires, tire pressure is as low as possible). AND In compacted areas, subsoiling is completed every other year in	In compacted areas, subsoiling is completed every 2 to 3 years. AND Equipment use is usually avoided when soils are saturated.	Compaction status is not known. AND Equipment is sometimes used when soil is saturated.	Compaction status is not known. AND Equipment is regularly used when soil is saturated.			
	the tire tracks, or deep-rooting cover crops are planted to help restore soil structure. AND Equipment use is avoided when soils are saturated.						

Common implements used for subsoiling include the chisel plow, spader, and paratill. A chisel plow typically has two shanks that ride in the tire tracks. It is more effective with drier soil and can extend to a depth of 18". The spader, a series of rotary shovels, loosens topsoil and fractures subsoil. It reportedly works in both dry and wet soils to a depth of about 14". The advantage to a spader is that it incorporates green cover. The paratill consists of a pair of coulters that slice the soil followed by 2 angled legs, each with a foot and riser plate on the bottom. It typically reaches depths of 12-18". It lifts and partially shatters the soil profile with maximum shatter occurring with drier soils. It does not mix top and subsoils, nor create clods, or large trenches. Note that it is not unusual for the chisel plow and paratill to sever vine roots in established vineyards.

VINEYARD MANAGEMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
How is soil erosion	Permanent cover crops are		Winter annual cover crops	No cover crop is			
addressed?	established in vine row		are established in vine	established.			
	middles and maintained		row middles.	AND/OR			
	throughout the year.		AND	Erosion is evident and			
	AND		Where erosion is evident,	no corrective measures			
	Where erosion is evident		corrective measures are	are taken.			
	corrective measures are		taken (e.g. grass				
	taken (e.g. grass waterway,		waterway, diversions,				
	diversions, filter strips).		filter strips), but some				
	AND		erosion is still evident.				
	Buffer/filter strips are		AND/OR				
	established around all water		No buffer/filter strips are				
	bodies, wetlands, and outlet		established around any				
	ends of concentrated flow		water bodies, wetlands,				
	areas.		or outlet ends of				
	AND		concentrated flow areas.				
	Straw mulch is applied to row						
	middles where available.						
		1		1			

The services of the Natural Resources Conservation Service (NRCS) and the Soil and Water Conservation District (SWCD) can be utilized to design and install appropriate erosion control methods.

Row Middle Management							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
If cultivation is used in	Slope is < 3% for heavy	Slope is < 3% for heavy	Slope is 3-9% for heavy	Row middles are clean			
row middles, what	soils or < 6% for medium	soils or < 6% for medium	soils or 6-12% for coarse-	cultivated every year.			
practices are used?	to coarse-textured soils.	to coarse-textured soils.	textured soils.	AND			
	AND	AND	AND	Slopes are >12% for			
	Shallow or trashy	Row middles are clean-	Shallow cultivation is	coarse-textured soils or			
	cultivation is practiced	cultivated no more than	practiced 1-3 times per	>9% for heavy soils.			
	every other year or less.	one time per season.	season.				
		OR					
		Slope is 6-12% and row					
		middles are shallow					
		cultivated no more than					
		once per year.					

Cultivation, whether in the row middle or under the trellis, can have negative consequences particularly if done in excess. It renders soils more prone to erosion, destroys soil organic matter and can alter the quantity and diversity of soil microbial populations. Row middle tillage can, and should, be done to periodically renovate row middles (reduces weed populations such as dandelions) and as a vine management tool in dry years (reduces competition for water).

Row Middle Management							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
What type of seeded cover crop is used?	Permanent cover crop is established.	Annual cover crops are fall- seeded with a no-till drill every year. AND Cover is established most of the year.	Cover crops are seeded into cultivated row middles. AND Cover is established from late fall through bloom.	Annual cover crops are established following cultivation only on slopes >12%.			
If permanent cover is used in row middles, how is it managed?	Vegetation covers more than 2/3 of the vineyard floor. AND Vegetation is uniformly dense within the 2/3 cover. AND A no-till seeder is used when renovating cover crops.	Vegetation covers more than 2/3 of the vineyard floor. AND Occasional bare spots occur on less than 10% of the vineyard. AND Cultivation is practiced only when renovating cover crops.	Vegetation covers less than 1/2 of the vineyard floor. OR Bare spots occur on eroded knolls on more than 20% of the vineyard.	Vegetation is difficult to establish and frequent gaps in vegetation cover are present.			

Drip line irrigation reduces the vines' soil moisture competition with sod and therefore the need to suppress its growth with herbicides.

Row Middle Management						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
What is the frequency of mowing?	Monthly from bloom to veraison, and only thereafter for worker comfort and safety.	Vineyard is mowed monthly from bloom to harvest.	Vineyard is mowed more than monthly during entire season.	Vineyard is mowed weekly.		
In regions where Lyme of to the amount necessary not reduce water use du course, vineyard blocks management can be a m directly.	disease is a concern, more from y to allow normal vineyard o uring droughts and excessive next to tasting rooms may be narketing strategy and mowin	equent mowing is warrante perations, worker safety, o mowing wastes fuel, tract e justifiably manicured as a ng less can provide an oppo	ed as a safety measure for or other carefully consider or time, and managemen a marketing practice. By t ortunity for tasting room s	r workers. Mowing should red vineyard objectives. N t time better devoted to o he same token, sustainabl staff to demonstrate this to	be restricted Nowing does ther tasks. Of e vineyard o customers	
If mulch is used in row middles for erosion control, how is it managed?	Mulch is applied to every row middle on eroded areas as needed. OR Mulch is applied to all vineyard blocks with slopes >12%.	Mulch is applied to alternate row middles in vineyard blocks with >12% slope.		Row middles are never mulched. AND Slopes are >12%, and permanent sod is not well established. OR Soils are eroded or low in organic matter.		

Application of straw mulch to row middles is a highly beneficial practice, particularly on eroded hillside vineyards. It conserves moisture, adds organic matter to the soil, and is highly effective in reducing erosion and runoff. It is commonly applied to alternate row middles, and often applied in the fall after harvest. Straw mulch can supply significant amounts of potassium to soils. It is most cost effective to use when growers bale the straw themselves and have open land that they can devote to producing it. Round bales are most often rolled out using self-fabricated tractor-mounted equipment to unroll the bales.

ESTABLISHED VINEYARD CONSIDERATIONS

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is ephemeral (small	No gully or	There is ephemeral erosion	Both ephemeral and minor gully	Both ephemeral	
rills that concentrate	ephemeral erosion	occurring in some blocks.	erosion is present. The erosion	and gully erosion	
into channels) or gully	is evident.	AND	forms a distinct, narrow channel	are present.	
erosion occurring on		There is no gully erosion.	through which water runs during		
the farm?		AND	a storm or when ice and snow		
		Sod prevents sediment from	melt. Channels remain after		
		entering watercourses.	tillage operations.		

ESTABLISHED VINEYARD CONSIDERATIONS							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Are filter strips (grass borders along watercourses) used?	Vegetative buffers are at least 20 ft wide and meet Natural Resources Conservation Service Standard. Filter strips surround all watercourses and vineyard borders.	Filter strips are present along most vineyard borders. AND No sediment is entering a major watercourse.	Filter strips are present along some vineyard borders.	Sediment directly enters a watercourse. AND/OR No filter strips are in place.			
Are drainage problems addressed?	Pattern tiling is established with tile lines parallel to rows at an adequate density for the soil texture. AND Tile spacing is appropriate for variety type (Vinifera may need more tiling than natives to be productive).	Soils are well drained to excessively well drained. OR Tile drainage is installed on poorly drained low areas or heavy soils. AND Tile spacing is appropriate for variety type (Vinifera may need more tiling than natives to be productive).	Soils are moderately drained to poorly drained. AND Tile lines extend only to observably wet areas.	Soils are poorly drained, and no tile drainage is utilized even in wet spots and low areas. AND Standing water persists after rain events.			

ESTABLISHED VINEYARD CONSIDERATIONS							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
If a nitrogen (N) supplying cover crop is used (e.g. a legume), are its N contributions factored into the vines' N requirements?	If your vineyard has a N requirement and a component of your cover crop fixes N (e.g. legumes such as clover and vetch), the fixed N is taken into account when calculating the application rate of additional N.		If your vineyard requires additional N, a component of the cover crop fixes N. BUT Total N supplied by the cover crop is not calculated. AND Vines show balanced growth, no excess vigor.	Although N is required, no legumes are used to fix N (i.e. all N is purchased and applied). OR A component of the cover crop fixes N, but the total N supplied by the cover crop is not calculated. AND Vines show excess vigor.			
A general equation used to calculate nitrogen contributions from cover crops is found on page 29.							

ESTIMATING AVAILABLE NITROGEN SUPPLIED BY COVER CROPS

To estimate the amount of nitrogen in your cover crop, you must assess the total yield of the cover crop and the percentage of nitrogen in the plants just before they die.

There are two ways to estimate yield. The most accurate way is to take cuttings from several places (of known surface area) in the vineyard, then dry, and weigh them. Clip the plants at ground level within the known area. Dry them out in the sun for a few days and use the following formula to determine the per acre yield of dry matter.

Yield (lbs/acre) = $\underline{\text{Total wt of dried samples (lbs)}}{\text{ft}^2 \text{ sampled}}$ x $\underline{43,560 \text{ ft}^2}{\text{1 acre}}$

An easier but less accurate method is to estimate your yield from the height of the cover crop and its percent cover. At 100% cover and 6" height, most grass legume cover crops will contain roughly 2000 lbs/acre of dry matter. For each additional inch, add 150 lbs. For example, a typical fescue, perennial ryegrass, or white clover vineyard cover crop that is 8" tall will yield 2000 lbs/acre of dry matter plus an additional 150 lbs for each additional inch for a total of 2300 lbs of dry matter per acre. If the strand is less than 100 percent, multiply by the percent cover. In this example, for an 80% cover you would obtain: 2300 lbs x 0.80 = 1840 lbs dry matter/acre.

To convert the yield to total nitrogen, use the following guideline: cover crop grass legume mixtures contain 2-3% N before flowering

and 1.5-2.5% after flowering. Therefore, total nitrogen in the cover crop = yield (lbs/acre) x % N/100.

To estimate the nitrogen available to the vines, divide the total nitrogen by 4 for cover crop material left on the surface in a no-till system.

So, in our example, if you mowed the vineyard three (3) times during the season when the cover reached a 6" height you would have 6000 lbs/acre of dry matter.

Total nitrogen = 2000 lbs/acre x 3 cuttings = 6000 lbs

6000 lbs/acre x 2.5* = 150 lbs

100

*Average nitrogen percentage before flowering.

Nitrogen available to vines = $\frac{150 \text{ lbs}}{4}$ = 37.5 lbs/acre

This procedure provides a gross estimate of available nitrogen in the soil from cover crops. To obtain a more accurate estimate you would have to send plant samples to a lab for analysis.

Organic matter decomposition in the soil also produces nitrogen. Each 1% of organic matter supplies 15-20 lbs/acre/year of nitrogen (Dr. Terry Bates, Cornell University, Fredonia Vineyard Laboratory).

Modified from: Sustainable Agriculture Network (1998).

THE BENEFITS OF USING COVER CROPS IN VINEYARDS

Cover crops do not need to be worked into the soil. Cultivation, whether in the row middle or under the trellis, can have negative consequences, particularly if done in excess. It renders soils more prone to erosion, burns off soil organic matter, and can alter the quantity and diversity of soil microbial populations. Row middle tillage generally negates the benefits of a row middle crop (no net increase in organic matter as it burned off roughly as fast as it is added). However, row middle tillage can and should be done to periodically renovate row middles (reduces weed populations such as dandelions) and as a vine management tool in dry years (reduces competition for water). In regard to mowing, more organic matter is preserved by mowing and letting the residue lie on the surface versus cultivation of any kind (roots contribute to organic matter as well).

From Ohmart and Matthiasson (2000):

- Permanent cover crops are the most practical and cost effective means of supplying the organic matter needed to maintain and improve the soil.
- Cultivation decreases organic matter.
- As the cover crop decays, it provides nutrients for the grapevines.
- Grass cover crops usually require some added nitrogen (20-40 lbs per acre), whereas legumes may require phosphorus and sulfur and should not receive any nitrogen, otherwise they become weedy.
- Different types of cover crops can either reduce or enhance vine growth.
- Cover crops tend to use more water than clean cultivation. Increased infiltration of rainfall may offset this loss in some years.

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
For soils with low organic matter (< 2 for	Organic matter, such as compost or composted	Organic matter, such as compost or composted	No organic matter is added to the soil.	No organic matter is added to the soil.	
Coastal Plain, and <3% for Piedmont and Appalachian regions), is additional organic matter added?	pomace, is banded to the soil under the vine row annually, or as needed. Compost is analyzed for nutritional composition as	pomace, is banded to the soil under the vine row occasionally. Compost is not analyzed. AND	BUT Vine prunings are chopped and remain in vineyard.*	AND Vine prunings are removed from vineyard.*	
	well as contaminants. AND Vine prunings are chopped and remain in vineyard.*	Vine prunings are chopped and remain in vineyard.*			

It is most practical to apply compost to a swath under the trellis rather than a broadcast application. Reasons include limited availability of high quality compost, the fact that large quantities are needed, and the expense involved. Dr. Ian Merwin, of Cornell University's Department of Horticulture, has documented that compost application increases soil microbial activity (CO₂ evolution), CEC (Cation Exchange Capacity), and available P, Ca, and K. Compost application can also result in shifts in microbial community structure. Caution – Compost/organic matter may add desirable components to the soil, however excessive application may lead to long term increases in vine vigor (especially for *vinifera*) which may have deleterious effect on fruit quality.

*Chopping the prunings may aid movement through the vineyard rows, removal of vine prunings may be warranted to reduce fungal disease infestations.

CALCULATING COMPOST APPLICATION ON VINE ROWS

Examples

Row spacing: 7 ft between rows x 5 ft between vines in row
Rows: 350 ft long; approximately 18 rows per acre
Compost: Have available approximately 5 tons/acre of compost 10,000 lbs/18 rows = 550 lbs/row

To apply compost to a certain depth: There are 1.5-2 yd³/ton 350 ft row x 2 ft swath x 0.042 ft (0.5" deep layer of compost) = 29 ft³ per row x 18 rows/acre = 522 ft³ 522 ft³/27 ft³ per yd³ = 14 yd³

<u>Summary</u>: The amount of compost needed to apply a 2 ft swath under the trellis 0.5" deep over 1 acre of vines is 14 yd³ or between 7 and 9 tons of compost. Generally, compost applications should be limited to no more than 10 tons/acre annually to avoid nutrient imbalances.

BENEFITS OF SOIL ORGANIC MATTER

- Attracts and holds nutrients in an available state, reducing leaching losses.
- Increases soil water-holding capacity.
- Binds soil particles into crumbs (aggregates), producing a granular structure that promotes the penetration of air to roots, the capillary movement of water and the penetration of roots through the soil.
- Transforms into vitamins, hormones, and other substances, which stimulate growth in plants.
- Feeds soil organisms, which in turn feed soil predators that also prey on root pests.

The soil builds up organic matter faster if the organic material is left on the surface than it does if it is worked into the soil. The oxygen introduced by the tillage "burns off" the organic matter. The natural process is for the material to "melt" into the soil over time.

From Ohmart and Matthiasson (2000)

VINEYARD MANAGEMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Is biodiversity of soil microorganisms considered when making soil management decisions?	A conscious effort is made to increase and diversify the soil microbial populations with 4 or 5 of the following methods: • Use of compost or other organic matter • Minimal row middle tillage • Reduction in or elimination of pre-emergence herbicides • Avoiding the overuse of post- emergence herbicides • Increase the diversity of plant material on the vineyard floor	At least 3 of the bulleted points in category 1 are used to benefit soil microbial populations.	1 or 2 of the bulleted points in category 1 are used to benefit soil microbial populations.	No effort is made to improve soil microbiology.			
A diverse soil microbia	l population has been implicated in	n nutrient uptake and ret	ention, disease suppressi	on and overall plant h	ealth.		

VINEYARD MANAGEMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
How is pomace utilized?	Pomace is composted on site and returned to the vineyard.	Pomace is composted off the farm and returned to the vineyard as mature compost.	Pomace is spread in the vineyard, fresh.	Pomace is not returned to the vineyard.				

Recycling of organic matter back into the vineyard is important to maintain soil organic matter and soil biodiversity. Pomace can be combined with a carbon source - leaves, for example - to create a more nutritionally balanced product that enhances the soil over and above the addition of fresh pomace. Though difficult to totally eliminate, even through proper composting, grapevine seedlings will proliferate from the spreading of fresh pomace. These seedlings are often infected by downy mildew, but are generally controlled through standard weed control practices such as herbicide use, cultivation, or mowing. Caution – Pomace contains large amounts of K which may have undesirable effect on fruit pH. If your vines and soil have high to excess K, do not return pomace to the vineyard.

II. NUTRITION MANAGEMENT

Nutrient management is important to ensure healthy, productive vineyards. It is not only important to have sufficient amounts of each nutrient available to the vine, but also to establish an appropriate balance of the relative amounts of all nutrients. Nutrient excess or deficiency can affect both yield and fruit quality, both for bulk wine and juice grape varieties and premium wine varieties. Nutrient availability is affected by soil texture, moisture, pH, and many other factors. It is important to adapt vine nutrition practices to site-specific vineyard conditions, rather than applying a "one-size-fits-all" approach to all vineyard blocks.

The Maryland Department of Agriculture requires all farms with >\$2500 annual income to have a Nutrient management plan produced by a certified advisor. See

http://mda.maryland.gov/resource_conservation/pages/nutrient_ma nagement.aspx or contact your local UME County Extension Educator or Specialist for more details.

For more details on the UME Nutrient Management Program visit: http://www.extension.umd.edu/anmp

Creating and utilizing an approved Nutrient Management Plan for your vineyard will assure that you are in legal compliance and offer optimal and economical management of nutrients for your vineyard.

Excess fertilizers – notably nitrogen and phosphorus – can also contaminate ground and surface waters. Managing nitrogen fertilization is most important because nitrogen is the most common fertilizer applied to vineyards, it directly affects vine size and quality, and it moves readily through the soil. Phosphorus can trigger excessive growth of organisms in surface water, leading to algal blooms and depletion of oxygen. Grape growers rarely add phosphorus to mature vineyards, except indirectly through

application of phosphorus-rich manures, so excess phosphorus is not a common concern.

This section addresses the uses of soil and tissue samples to guide nutrient management decisions and special consideration for using soil characteristics and vine growth as guides for nitrogen management.

Photography credit: Bob White, MGGA member

35

MONITORING NUTRIENT STATUS									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
Is tissue analysis done on a regular basis?	Tissue analysis is done in all blocks every 3 years on rotating basis. Results are used in planning future fertilization.	Tissue analysis is done most blocks every 3 years.	Tissue analysis is done only when there is a problem.	Tissue analysis is not done.					
The University of Maryland See http://go.umd.edu/Tis The Maryland Department certified advisor. See http Extension Educator or Spec For more details on the UN	The University of Maryland Extension recommends bloom sampling because in-season correction is possible. See http://go.umd.edu/TissueTesting and http://go.umd.edu/TVitTissueSampling for more details. The Maryland Department of Agriculture requires all farms with >\$2500 annual income to have a Nutrient management plan produced by a certified advisor. See http://mda.maryland.gov/resource_conservation/pages/nutrient_management.aspx or contact your local County Extension Educator or Specialist for more details. For more details on the UME Nutrient Management Program visit: http://www.extension.umd.edu/anmp								
Is soil analysis done on a regular basis?	Soil analysis is done at same time in the same blocks as tissue sampling, more often if problems arise. Results are used in planning fertilization and liming, as well as, organic matter amendments.	Soil analysis is done on most blocks every 3 years.	Soil analysis is done less than every 3 years and/or only in problem areas.	Soil analysis is not done.					

NITROGEN (N) MANAGEMENT PRACTICES									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
What criteria are used to	Soil applied N rates are adjusted	Soil applied N	Soil applied N	N rates are not					
determine the rate of N	based on at least 6 of the following:	rates are adjusted	rates are based on	adjusted for variety,					
fertilization?	• Variety	based on 4 or 5 of	2 or 3 of the	crop level, soil organic					
	 The previous year's crop level 	the criteria.	criteria.	matter, winter injury,					
	(Fruit removes approximately 4 lbs			or any other criteria.					
	of N/ton of fruit produced.)								
	 Vine pruning weights 								
	 % soil organic matter 								
	 Visual clues of N deficiency or 								
	excess								
	• Canopy fill								
	• Vine vigor								
	 Degree of winter injury 								
	 Historical records on amount of N 								
	used.								

Nitrogen is the plant nutrient most susceptible to loss by leaching (movement through soil) into groundwater. Specific health problems are associated with nitrate contamination of drinking water supplies. Nitrate levels higher than 10 mg/l (designated the Maximum Contaminant Level by the US EPA) have been found in groundwater, often in association with spring runoff or heavy rainfall events. It is therefore absolutely essential for grape growers to use nitrogen in a thoughtful and sparing manner.

Key Points for N Fertilization:

- If winter injury has occurred, delay N decisions until after fruit set to allow evaluation of vigor level and fruit set.
- N deficiency symptoms: pale green leaves, small leaves, spindly shoots, short internodes, poor fruit set.
- N excess symptoms: dark green, "dinner plate" leaves, bullwood, succulent shoots with long internodes, poor fruit set.
- Vinifera grapes do not require N fertilization in most years. Refer to your Nutrient Management Plan for details.

For more information on Nitrogen nutrition, go to: http://go.umd.edu/TVitNFertilization

NITROGEN (N) MANAGEMENT PRACTICES								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
What is the total amount of supplemental Nitrogen (N) fertilizer applied from all sources?	Vinifera & Premium Hybrids: All N is derived from soil organic matter and/or cover crops. No supplemental N is necessary. Bulk hybrids & natives: < 30 lbs/acre actual N is applied in a given year.	Vinifera & Premium Hybrids: < 20 lbs/acre actual N is applied in a given year. Bulk hybrids & natives: 30-50 lbs/acre actual N is applied in a given year.	Vinifera & Premium Hybrids: 20-40 lbs/acre total actual N is applied in a given year. Bulk hybrids & natives: 50-70 lbs/acre actual N is applied in a given year.	Vinifera & Premium Hybrids: >40 lbs/acre total actual N is applied in a given year. Bulk hybrids & natives: >100 lbs/acre actual N is applied in a given year.				
Is contribution of Nitrogen (N) from organic sources considered?	N contributions from compost, legumes, mulch, and cover crop residues are estimated to reduce N fertilizer rates.			N contributions from organic sources are not used to reduce N fertilizer rates.				

Nitrogen release from organic matter such as compost and mulch can be calculated from their analysis (if known) and the Carbon to Nitrogen, C:N, ratio. According to Dr. Terry Bates (Cornell University, Fredonia Vineyard Lab), if the N content of the organic matter is >2.5% or the C:N ratio is < 20, N will be released. Materials with a C:N ratio >20 require further decomposition before they can release N, and in fact may lead to N deficiencies as N is sequestered by soil microorganisms.

NITROGEN (N) MANAGEMENT PRACTICES								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Are different rates/timing of N fertilization tried in an effort to reduce overall N use?	Experiments have been/are being conducted on the farm examining a range of N rates and/or timings with the goal of minimizing N fertilizer application.	The timing/rates of N fertilization are based on recommendations from area extension services for the region and varieties grown, but farm-specific experiments have not been done.		The timing/rates of N fertilization are not based upon on-farm research or extension guidelines.				
Are organic fertilizers used?	All fertilizers, foliar and ground applied, are organically acceptable.	A portion of fertilizers used is organically acceptable.	Only synthetic fertilizers are used.					

While organic fertilizers offer potential benefits that synthetic fertilizers may not, increased costs may preclude their use, particularly in bulk production vineyards.

Organic fertilizers are slower to release N, often have an unpredictable rate of release and are more dilute. Some sources report that organic fertilizers can also be high in salts and warn against over-application. On the other hand, if used long-term, they may improve the quantity and quality of soil organic matter, promote soil biodiversity and reduce leaching (through the improved organic matter and slow release of N). Misapplication of any fertilizer – organic or synthetic – can pose a leaching hazard, not to mention a potential headache in the vineyard.

It is more difficult to ascertain the exact rate of organic fertilizer to add given the unpredictable rate of N release. Use of split applications and supplementation with foliar N will allow tweaking of the N rate. Examples of common organic N fertilizers include peanut meal, soybean meal, feather meal, and fish meal.

NITROGEN (N) MANAGEMENT PRACTICES							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
When is N fertilizer soil-applied in spring?	N is applied during the period of maximum uptake – pre-bloom to fruit set. AND Split applications are used with 30-50% of the N applied pre-bloom and the remainder applied post- bloom.	All N is applied during the period of maximum uptake – pre-bloom to fruit set. AND Split applications are not used.	N is applied up to 2 weeks prior to budbreak when vines are still dormant. OR All N is applied in the period between fruit set and veraison.	N is applied >2 weeks prior to budbreak.			
There is little absorption N stored in the woody p advantage in terms of N	on of N by roots prior to budbi parts of the vine. It is unclear Navailability to the plant. <i>For</i>	reak. The soil is cold and roo r whether pre-budbreak appl r more information on Nitrog	ts are inactive. Early vine g ication of slower release o <i>en nutrition, go to:</i> http://g	rowth depends almos rganic fertilizers confe go.umd.edu/TVitNFer	t entirely on ers an tilization		
If N fertilizer is soil- applied during the post-harvest period, what criteria are used?	All soil-applied N is applied in spring and summer as per the guideline above.	N is applied in September or after the harvest of earlier varieties such as Chardonnay but not after late-ripening varieties like Merlot or Cabernet Sauvignon; canopy has healthy, functioning leaves when N fertilizer is applied.	N is applied after harvest of late-ripening varieties such as Merlot and Cabernet Sauvignon; canopy has healthy, functioning leaves when N fertilizer is applied.	N is applied after harvest of late- ripening varieties and there is an absence of healthy, functioning leaves when N fertilizer is applied.			

NITROGEN (N) MANAGEMENT PRACTICES								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
In irrigated vineyards, how is N fertilizer applied?	If drip irrigation is installed, fertigation is used to efficiently apply small doses of N to vines.	A combination of fertigation and ground applied N is used.		Only ground or foliar applied N is used.				
If foliar N is used, when is it applied?	Foliar N is used only when necessary or not at all. Use is based on visual cues from vines and/or tissue analyses reporting < 1.0% N in spring.		Foliar N is used several times, its use based on the calendar.	Foliar N is included in most tank mixes automatically.				

Early season foliar N is common in winegrape vineyards and may benefit N deficient vineyards. However, N needs are best addressed through addition of organic matter and/or ground application of N fertilizers.

Clusters have a fairly high N demand around veraison. Foliar-applied urea (or other foliar feeds containing N) applied several times around veraison can increase yeast-assimilable nitrogen (YAN) in musts, particularly when drought has limited N uptake from the soil. In Cornell trials over the last few years, up to 10 lbs urea in 100 gallons (5 lbs actual N) has been used without burning the foliage. This is not a panacea for eliminating Atypical Aging (ATA, a wine defect associated with limited N uptake in drought years in white wines), but has had a secondary role (the more major effect occurring with irrigation) in reducing ATA. It is effective in bumping up the YAN values, which may help winemakers avoid stuck fermentations. It does not appear to prolong or "restart" shoot growth, nor delay wood maturation.

MACRONUTRIENT MANAGEMENT PRACTICES: CALCIUM (CA), MAGNESIUM (MG), POTASSIUM (K)

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
How are macronutrient -	Macronutrients are	Macronutrients are	Macronutrient levels in	Fixed amounts of	
P, Ca, Mg, K - levels	maintained at acceptable	maintained at acceptable	soil are adjusted only	macronutrients are	
managed in soil?	ranges based on soil and	ranges based on soil and	when deficiencies occur.	applied annually.	
	petiole results.	petiole results.			
	AND	BUT			
	Vineyard manager can identify deficiency	Vineyard manager cannot identify deficiency			
	symptoms.	symptoms.			

The application of Ca, Mg, and K as foliar nutrients is not well understood. Use can be based in part on soil/tissue analysis and visual clues. Magnesium deficiency is often addressed through the use of foliar applied Epsom salts. In general, due to the relatively large quantities required by vines, macronutrient nutrition is best addressed through the root system. Potassium is a very critical nutrient in the vineyard and very plentiful in Maryland soils. Excess K can lead to problems with elevated fruit pH during harvest, so applications, if any, should be very judicious. This will be reflected in your Nutrient Management Plan.

Excessive amounts of P in surface water promote the growth of algae and other aquatic organisms, potentially depleting oxygen levels in surrounding water bodies. This can have profound impacts on aquatic life. Because P is less available in acid soils, simply increasing soil pH to 6.0-6.5 will increase P availability. Generally, P fertilization has not been found to benefit vineyards in part due to the immobility of the nutrient.

MACRONUTRIENT MANAGEMENT PRACTICES: CALCIUM (CA), MAGNESIUM (MG), POTASSIUM (K)

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is the base saturation	Base saturation	Base saturation	Base saturation	Base saturation	
ratio in the soil analysis	percentages are fully	percentages are slightly	percentages are grossly	percentages are	
within recommended	within ranges	imbalanced. Adjustment	imbalanced.	grossly imbalanced.	
ranges?	recommended by the soil	is addressed in action	Adjustment is addressed	Plans for adjustment	
	analysis lab.	plan.	in action plan.	have not been made.	

Some soil labs provide percent base saturation (% BS), the relative percentage of the cations Ca, Mg, K, Na (sodium) and H (hydrogen) occupying exchange sites on soil particles. The following standards are used: Ca, 65-75%; Mg, 10-15%; K, 3-5%; Na, < 2% (more important for CA growers where high sodium soils can be a problem); and H, depends on pH. BS percentages are useful in choosing a type of lime or fertilizer (e.g. use of high Mg [dolomitic] lime vs. high Ca lime).

MICRONUTRIENT MANAGEMENT PRACTICES: BORON (B), MANGANESE (MN), ZINC (ZN)

How are micronutrients -	Micronutrients are	Micronutrients are	Micronutrient levels in	Fixed amount of	
B, Mn, Zn - managed?	maintained at acceptable	maintained at acceptable	soil are adjusted only	micronutrients are	
	ranges based on soil and	ranges based on soil and	when deficiencies occur.	applied annually.	
	petiole results.	petiole results.			
	AND	BUT			
	Vineyard manager can	Vineyard manager cannot			
	identify both deficiency	identify all deficiency and			
	and toxicity symptoms.	toxicity symptoms.			

MICRONUTRIENT MANAGEMENT PRACTICES: BORON (B), MANGANESE (MN), ZINC (ZN)

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
What criteria are used	Micronutrients are used		Micronutrients are used	Annual applications of	
for foliar and ground	only when necessary; use is		once or twice; use is	micronutrients are made	
application of	based on visual cues from		based on calendar or	without regard to petiole	
micronutrients?	vines and/or petiole and soil analyses.		habit.	and soil results.	

There are many types of micronutrient fertilizers. The most commonly applied are boron, manganese, and zinc. Because these elements are required in small quantities and petiole analyses sometimes do not reflect a deficiency (due to time of sampling, type of tissue sampled, dilution effects due to vigorous growth, etc.), it is sometimes necessary to use these fertilizers based on historical knowledge of the vineyard. It is often hard to gauge efficacy of micronutrient fertilizers as they are used in small quantities and the elements are involved in specific enzyme systems and chemical pathways. If possible, leave a section of the vineyard untreated. To judge potential benefits, evaluate subsequent fruit quality and quantity. Examine soil and petiole analyses. Extra diligence in necessary in Maryland's coastal plain (sandy) soils as B is typically low and B added to the soil is prone to leaching, especially when organic matter is low. Pre-bloom foliar sprays are most efficient.

FERTILIZER STORAGE								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
What is the storage duration of fertilizers?	No fertilizers are stored at any time.		Fertilizers are stored during the season.	Fertilizers are stored for more than one season.				
What type of storage is used for dry formulations?	Covered storage on impermeable surface such as concrete or asphalt. Spills are collected.	Covered storage on permeable surface (other than sandy soils). Spills are collected.	Partially covered storage on permeable surface (on other than sandy soils). AND/OR Spills are not collected.	There is no cover, soils are sandy. AND/OR Spills are not collected.				
What is the condition of the containers?	Tanks or bags should be clearly labeled. No holes, tears, weak seams, or leaks unless there is secondary containment.	Labels are missing or hard to read. Bags are old with no holes or tears unless there is secondary containment.		Bags/containers are old and in need of repair. Metal containers show signs of rusting. No labels or secondary containment.				

Fertilizer Storage							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
What security measures are taken at the storage area?	Area is fenced or locked and separate from all other activities or valves are locked.	Area is fenced or locked and separate from most other activities.		Area is open to activities that could damage containers or spill fertilizer.			
What is the distance from the fertilizer storage to the nearest surface water body or well?	Greater than 200 ft and storage building is curbed with a concrete pad. OR No fertilizer is stored on the farm.	100-200 ft and storage building is curbed with a concrete pad designed to contain 125% of the volume of the stored products.	At least 100 ft and storage building is not curbed with a concrete pad.	There is less than 100 ft between the fertilizer storage and the nearest surface water body or well.			

III. VINEYARD MANAGEMENT

In the humid Mid-Atlantic, vineyard management is closely linked to the dual goals of pest management and production of quality fruit. With major challenges inherent in warm climate viticulture, vineyard management practices must be fine-tuned to achieve goals. From vine spacing and training system choices to pruning practices, canopy management practices and winter protection methods, vineyard cultural practices affect profitability and fruit quality, and need to be applied in a flexible manner to confront each season's unique and different challenges. One overall goal is to strike a balance between cropping levels and vegetative growth to ensure achievement of optimum yield of mature, high quality fruit.

This section addresses variety, rootstock, and vine spacing choices, timing and application of winter injury protection, adjustment of cropping levels and shoot density, timely application of canopy management practices, and crop estimation as components that influence environmental sustainability and profitability.

Photography credit: Bruce Perrygo, MGGA member

PLANT MATERIAL AND PLANTING					
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is certified plant material used for vinifera and hybrid selection where possible?	A reputable nursery providing certified plant material (scion + rootstock) is used.	A reputable nursery is used; either the scion or the rootstock is certified.	The nurseryman harvests scion material from a reputable grower whose vines were certified.	Vine scion and rootstock are non- certified material.	
Currently, the primary v and rootstock that is tru blocks. Budwood from	vine certification program in the to type and virus disease-t increase blocks is then used s not a 100% guarantee again	the U.S. is the Foundation F ested. Generally, CA nurse for grafting. The use of cer	Plant Service (http://fps.uc erymen buy material from l tified plant material can re	davis.edu/). They prov FPS to create certified in educe the incidence of h ficulty in detecting viru	ide budwood ncrease eaf roll virus.

possibility of transmission by nematodes or mealybugs and transmission from non-certified virus infected material.

Native varieties are included in certification programs. FPS offers Concord, Niagara, Ontario, Catawba, and others in limited quantities, as these varieties are not grown in CA. Several nurseries also offer crown gall-free Niagara vines.

Are the variety and	Variety and rootstock are	Variety and rootstock are	No consideration is	
rootstock appropriate	appropriate for the given	appropriate for the	given to the	
for the given site?	site based on winter	region.	appropriateness of	
	hardiness, soil type and		variety/rootstock to	
	site characteristics.		the specific site or	
			region.	

On replant sites, hybrid varieties susceptible to tomato ringspot virus should be grafted onto resistant rootstock. This includes varieties such as Vidal blanc, Baco noir, and DeChaunac.

PLANT MATERIAL AND PLANTING							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Is fungal resistance considered when selecting varieties for planting?		Fungal resistance is considered and varieties resistant to most fungal diseases are selected.	Fungal resistance is considered and varieties moderately resistant to some fungal diseases are selected.	Vinifera varieties that are highly susceptible to fungal diseases are selected.			
Is the row orientation appropriate for the site?	Rows are oriented N-S to maximize sunlight interception. Where necessary, rows are perpendicular to slopes to minimize erosion.			Row orientation is not appropriate for the site and variety/rootstock.			
Does a map of the vineyard exist?	A detailed map exists of the vineyard, allowing accurate calculation of acreage. The map includes varieties, drainage tiles, irrigation mains/submains, buildings, roads, areas of runoff, water bodies (lakes, ponds, streams) and wells. Map information is tied to production records.		A map exists but is inaccurate or incomplete.	No map exists.			

Matching the variety to the site, is especially important because of the distinct, diverse regions of Maryland. The University of Maryland Extension has researched many variety /location combinations around the state and has very site specific recommendations; contact your local County Extension Educator or State Extension Specialist for details.

It is generally recommended that all hybrids be grafted, especially Chambourcin, Vidal Blanc, Chardonel, Seyval Blanc and Traminette. On replant sites, hybrid varieties susceptible to tomato ringspot virus should be grafted onto resistant rootstock. This includes varieties such as Vidal Blanc, Baco Noir, and DeChaunac.

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Are there any on-farm experiments evaluating plant material or trellising options?	Experimental varieties, rootstocks, and/or training systems are being evaluated on a small scale. Data is taken to evaluate performance.	Experimental varieties, rootstocks, and/or training systems are being evaluated on a small scale. Evaluation is anecdotal, data is not taken.		No experimentation is being done.	

On-farm experimentation can encompass almost anything from informal evaluations to formal, replicated field trials. Key ingredients that must be used to make field comparisons useful are: **1**) vary only one practice at a time; **2**) leave a portion of the same vineyard block "untreated" or with your standard practice; **3**) measure something objective; and **4**) record your observations. Area extension programs may be useful in helping growers design informal or formal trials. Here are a couple of publications that may be useful for setting up on-farm trials:

How to Conduct Research on your Farm. Northeast Sustainable Agriculture Research and Education Program (SARE) http://www.sare.org/publications/research/research.pdf

Sundermeyer, Alan. 1997. *Guidelines for On-farm Research*, ANR-007-97, Ohio State University http://ohioline.osu.edu/anr-fact/0001.html

VINEYARD MAN	NAGEMENT				
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is the training system appropriate for the site and variety/rootstock? Modified from Ohmart and Matthiasson (2000).	Training system accommodates vine vigor allowing optimum canopy density and fruit exposure without extensive canopy manipulation.	Training system accommodates vine vigor but remedial steps are necessary to deal with vine vigor.		Training system is not suitable.	
Most vinifera and many h the Scott Henry system. Umbrella or Geneva Doul curtain, such as GDC and S For more detailed informe http://go.umd.edu/TVite	ybrid winegrapes are suited to Native and bulk hybrids with puble Curtain. The optimum shoo Scott Henry will have twice the <i>ation on pruning, including adju</i> BalancedPruning1; http://go.un	Vertical Shoot Positioned rocumbent growth habits a ot density for single curtain shoot number. <i>usting vine balance, timing,</i> nd.edu/TVitPruningTiming	systems. More vigorous re suited to top wire sys systems is 4-5 shoots/ft and pre-pruning, go to: 2; http://go.umd.edu/T	s winegrapes may be tra stems such as the Hudso t of row. Systems with i /itPrePruning3	ained using on River more than one
Is vine size monitored?	Prior to pruning each vineyard block, randomly- selected, permanently- tagged vines are pruned and the brush is weighed.	Prior to pruning each vineyard block, a few representative vines per acre are pruned and the brush is weighed.	Though vine size is monitored, averages exist on a whole farm basis rather than block by block.	No attempt is made to monitor vine size or track pruning weights.	
One of the key measures facilitate the production addressed in many texts	of vineyard performance is vir of economical yields of high qu including the classic work, Sun	ne size. Vines must be bala uality fruit, whether dealing <i>light Into Wine</i> , by Smart ar	nced to facilitate light a g with labrusca, hybrid, o nd Robinson (1991).	nd air penetration. The or vinifera vines. This to	ey must also opic is

Vine size assessment is done primarily through the weighing of dormant vine prunings. Typically, the weight of canes on a per vine basis ranges from 0.2 – 0.4 lbs pruning weight/ft of row. The ideal weight is related to variety, yield goals, inherent vigor of the scion, etc. For labrusca and hybrid varieties grown on divided canopies, pruning weights would reflect the doubling of linear feet of canopy.

VINEYARD MAN	VINEYARD MANAGEMENT					
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
If vines are determined to be unbalanced - too small or too large - are steps taken to increase or decrease vine vigor?	A plan is set forth to increase or decrease vigor of unbalanced vines.	A formal plan does not exist but several steps to modify vigor are being taken.		There are no plans to adjust vine vigor.		
To increase vine size: lea increase irrigation. To de establish permanent cove	ve fewer buds at pruning, crease vine size: leave mo er in row middles, and/or	increase nitrogen fertilization, red ore buds at pruning, reduce nitroge decrease irrigation.	luce crop level, till ro en fertilization, delay	w middle cover in spring cluster thinning until ve	g, and/or eraison,	
Is shoot density appropriate? Note: These 3 guidelines apply primarily to training systems that require shoot positioning.	A shoot density of 4-5 shoots per linear foot of row is achieved without extensive shoot thinning.	 Where necessary, shoots are thinned to 4-5 shoots per foot of row using the following guidelines: Thinning should be done when shoots are < 6" in length. Consideration should be given to the maintaining of the training system. If possible, sterile shoots should be eliminated first. 	Shoot thinning is done though guidelines are not followed conscientiously.	Shoot thinning is not done. Shoot density exceeds recommendations, resulting in a dense, shaded canopy.		
A delay in shoot thinning For more detailed informa	/shoot positioning leads t ation on canopy managem CanopyManagement	o poor air and light exposure, impo nent, including shoot thinning and p	ortant for both pest n	nanagement and fruit qu	ality.	

VINEYARD MA	VINEYARD MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Is shoot positioning done in a timely manner?	Catch wires are lifted on a timely basis, shoots are properly tucked and shoot positioning is conscientiously done.	Canopy maintenance is good but improvements could be made in timing and method.	Catch wires are not always adjusted in a timely manner.	Adjusting of catch wires is perennially behind schedule, leading to poor penetration of air, light, and spray.			
Shoot positioning and the adjustments in catch wi lignification of shoots a <i>For more detailed inform</i> http://go.umd.edu/TVi	he straightening of tangled, res, these practices facilitat nd presence of tendrils. nation on canopy managen tCanopyManagement	, intertwined shoots, impro te cluster thinning and leaf nent, including shoot thinnir	ives air, light, and spray per removal. If these practices ing and positioning, go to:	netration. Along with app are delayed, costs increa	ropriate se due to the		
Are the canopy	Canopy density is such	Leaf removal in the	Leaf removal in the	Leaf pulling and hedging			
management practices	that approximately 50%	cluster zone is done so	cluster zone is done so	are insufficient. The			
of leaf removal and	of fruit is exposed to	that no more than 50% of	that no more than 50% of	canopy never stops			
nedging done properly?	nulling/hedging is	Hedging is done only one	Hedging is done 2-3 times	large canopy with poor			
property.	necessary to achieve a	time per season. There is	per season with some	air and light			
	canopy of 1.5 leaf layers in thickness.	no significant growth of lateral shoots.	growth of lateral shoots.	penetration.			

CROP MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Is the yield appropriate for the vineyard block?	 Yield is adjusted according to the following: Variety Vine Size Vine Health Historical Yield/Quality data Guidelines below are followed for respective varieties. 	Yield is adjusted according to the following: • Variety • Vine Size • Vine Health Guidelines below are not necessarily followed.		Crop level is not adjusted according to variety, vine size, or vine health.		

Labrusca and bulk hybrids: Yield is determined by crop estimation at 30 days post-bloom. Crop reduction takes place at that time, if necessary. For every 3 days the bloom date is earlier or later than the long-term average, an additional ton of fruit can be ripened (when it is early) or must be removed (when it is late).

Vinifera and premium hybrids: Yields are adjusted according to the parameters above. In cooler seasons/vintages, some crop reduction may be necessary to ripen late season red varieties such as Cabernet Sauvignon.

CROP MANAG	CROP MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Is crop thinning done in a thorough and conscientious manner?	If necessary, crop is thinned according to the guidelines below.	Crop thinning guidelines are followed though improvements can be made in timing and/or execution.	Crop thinning is done without knowing the potential crop or what percentage is taken off.	Crop thinning is not done even when necessary to maintain fruit quality and vine health.			
 Labrusca: Thinning is done bet If done mechanically berries and shoots. Crop is adjusted to end of the state of	ween 30 days post-bloom	and veraison. noval and damage to or quality standards.	 Vinifera: Thinning is done soon aft avoided except where imp For vigorous varieties, thi When thinning takes place removed, overlapping clusted drying, and clusters on short A target number of clusted estimated cluster weight. depending on vine size. For more detailed information targeting and timing of clusted bittp://go.umd.edu/TVitCrost 	er fruit set. Pre-bloom clus rovements in berry set are nning is delayed until vera e, diseased or damaged clu ters are thinned to facilitate rt shoots are thinned or ren rs per vine is determined b The number is adjusted up ation on crop management, ster thinning, go to : opManagement	eter thinning is desired. ison. esters are first e airflow and noved totally. based on or down <i>including</i>		

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is yield estimated properly?	Yield estimation is based on historical average cluster weights and mid- season sampling of clusters.	Yield estimation is based on cluster counts and historical average cluster weights.	Yields are estimated by looking at the vines and guessing or counting clusters on a few vines.	Yields are not estimated.	

Vinifera: The most accurate system for predicting yields is based on cluster weights during "lag phase" which is the period when the growth of berries slows temporarily (typically about 55 days after first bloom). The other traditional method is based on a running historical record of cluster weights for that variety block.

For more detailed information on crop estimation, go to : http://go.umd.edu/TVitCropEstimation

MAINTAINING VINEYARD PROFITABILITY

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Are missing vines	Missing vines are counted	Missing vines are replaced	Missing vines are	Missing vines are	
counted and	and replaced every year. For	every other year; where	replaced every few	replaced sporadically	
replaced regularly?	non-grafted vines, layering is done to replace vines. AND	appropriate, layering is practiced every other year. AND	years; layering is practiced every few years.	or not at all.	
	Yield records are adjusted to account for missing vines.	Yield records are adjusted to account for missing vines.			

Missing vines reduce vineyard profitability and lead to inefficiency in use of pesticides and fertilizers. Yield must be estimated with missing vines taken into consideration. If overall yield is 4 tons/acre but 50% of vines are missing, functional crop is therefore 8 tons/acre, a potential overcrop.

Are adequate	Vineyard expenses and	Vineyard expenses and	Vineyard expenses and	Overall farm income
production records	income are recorded for each	income are recorded by	income are not broken	and expenses are
kept to evaluate	individual block.	variety but not by individual	out by variety and	recorded only when
vineyard		block.	block but overall farm	tax returns are filled
profitability?			income and expenses	out.
			are known.	

Many growers in MD have a wide range of varieties with different prices and inputs. Knowing what is spent in each individual block is crucial for making vineyard management decisions and improving profitability. This is particularly true for natives and bulk hybrids. For more detailed information and tools on keeping records to evaluate vineyard profitability, go to : http://go.umd.edu/VineyardEconomics

IV. IRRIGATION MANAGEMENT

Irrigation can be an important management tool for managing vine water relations, particularly in areas with sandy or gravelly soils, young vineyards with limited root systems, and soils with limited water-holding capacity. The availability of water to the vine (both in amount and timing) plays a crucial role in fruit quality. Drought stress limits yield and reduces the vine's ability to fully ripen the fruit, while surplus water can lead to excessive vine growth, loss of fruit quality, and delayed or reduced winter acclimation. Rainfall generally meets or exceeds vine needs in the Mid-Atlantic.

Irrigation also presents the opportunity to deliver fertilizers efficiently to vines through fertigation. The benefits include better timing and placement of fertilizer in the root zone, minimization of losses to volatilization and leaching, and reduced costs associated with field application of fertilizers.

Efficient use of irrigation involves proper maintenance and design of irrigation systems and an understanding of how to apply the right amount of water at the right time to benefit vines. Questions in this section address design, maintenance, and efficient operation of irrigation systems for vineyards.

Photography credit: Bruce Perrygo, MGGA member

SUSTAINABLE VITICULTURE • IRRIGATION MANAGEMENT

THIS SECTION OF THE WORKBOOK PERTAINS TO IRRIGATED VINEYARDS. IF YOUR VINEYARD IS NOT IRRIGATED, YOU MAY SKIP THIS SECTION

IRRIGATION MANAGEMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Is there off-site water movement?	Irrigation practices result in no runoff. AND Conservation practices are in place to minimize runoff (e.g. perennial cover crops, subsoiling, buffer/filter strips, diversions, and grass waterways).	Irrigation practices result in no runoff. AND Conservation practices are present but some need improvement.	Irrigation practices result in no runoff but runoff and erosion occurs during high rainfall events. AND/OR Conservation practices need major improvement.	Runoff occurs when irrigating and/or during rainfall events.				
See also the guideli	nes on drainage in the Soil Ma	inagement section.						
What type of irrigation do you use?	A low volume system such as "drip" is installed. AND System has been designed by a technician with experience in irrigation to ensure uniform distribution of water.	A low volume system such as "drip" is installed but no design was used.		A low volume system is not used.				

IRRIGATION SYSTEM MAINTENANCE								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Do you check for	System is checked at the	Distribution uniformity is		Distribution				
distribution uniformity?	beginning of each growing	tested irregularly by		uniformity is never				
	season by measuring	measuring emitter outflows		checked.				
	emitter outflows and	and pressure differential in						
	pressure differential in	each zone.						
	each zone.							
Drip irrigation distributio in a uniform manner. Thi	n uniformity should be check s is particularly important for	ed at the beginning of each gr scheduling purposes and if fe	owing season to ensur rtigating.	e that the system is ap	plying water			
point from the pump.	ider, measure the output of 3	consecutive emitters close to	the pump, 3 in the mi	ddie of the zone and 3	at the farthest			
2. Convert the measured	flow to gallons per hour as fo	llows:						
ml/sec x 1 oz/29.57	ml x 1 gal/128 oz x 60 sec/m	nin x 60 min/hr						
3. Average the measurem	nents, making sure the flow ra	ange does not exceed ± 15% of	f the average flow rate	. Readings >15% indica	ite problems			
with the system, the mos	t obvious being clogged emit	ters.						

IRRIGATION	System Maintena	NCE			
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is routine maintenance performed on the irrigation system?	Water filters are inspected and cleaned whenever pressure differences indicate, and irrigation lines are flushed at the beginning and end of each season. AND Chemical treatment of the water is completed if tests show a problem (e.g. to prevent precipitate buildup and kill algae or bacteria present in the system).	Water filters are inspected and cleaned whenever pressure differences indicate, and irrigation lines are flushed at the beginning of the irrigation season each year.		Water filters are not regularly inspected or cleaned, and irrigation lines are not flushed at all.	
OxiDate, a hydroger publications on irrig	n peroxide product, is labeled as a gation system maintenance - http:	an irrigation disinfectant. Rutge //www.rce.rutgers.edu/.	ers Cooperative Exten	sion also has several use	eful
Is a flow meter installed?	Flow meter is installed and used to monitor application rates throughout the season.	Flow meter is installed but not regularly used to monitor the system.	Flow meter is not installed.		

IRRIGATION SCHEDULING								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Is the vineyard's soil water holding capacity used in setting irrigation schedules?	The USDA Soil Survey is utilized to determine the average water holding capacity of the most common soils in the vineyard. AND The effective rooting depth of your soils has been determined through excavation. AND This information is used in irrigation scheduling.	The USDA Soil Survey is utilized to determine the average water holding capacity of the most common soils in the vineyard. AND This information is used in irrigation scheduling.		Soil water holding capacity is not known. Vines are irrigated when soil looks dry.				

IRRIGATION SCHEDULING								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Are monitoring	Soil moisture monitoring	Soil moisture monitoring is	Soil moisture monitoring	An irrigation schedule				
devices used to	devices (e.g. neutron gauge,	done by bucket auger	devices are not installed.	is maintained				
determine the	tensiometer, or gypsum	(judging by feel).	BUT	regardless of soil				
irrigation	blocks) are installed and	AND	Weather data is recorded	moisture or weather				
schedule?	used to track soil moisture	Weather data is recorded	and seasonal rainfall	conditions.				
	depletion.	and seasonal rainfall	amounts are considered					
	AND	amounts are considered	when deciding when to					
	Weather data is recorded	when deciding when to	irrigate and how much					
	and seasonal rainfall	irrigate and how much	water to apply.					
	amounts are considered	water to apply.						
	when deciding when to							
	irrigate and how much water							
	to apply.							

Tensiometers reveal soil moisture potential in a specific area. They read changes in soil moisture by measuring the vacuum created by water movement through a ceramic tip. This mimics how soil moisture moves into the root zone of a plant. Tensiometers can help determine when to irrigate but not how much water should be applied. Begin irrigation when the tensiometer reads between 30 and 40 centibars. Observe the response on the tensiometer after irrigating. If it shows that the soil is wet (a gauge reading of 0-10), the system is working well. Operation times can be adjusted based upon the response of the tensiometer.

There are a number of other methods for measuring soil moisture such as neutron probes and gypsum blocks. Alternatively, a more accurate method may be to measure vine water potential using pressure bombs.

IRRIGATION SCHEDULING								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
What factors are used to determine length of time for irrigation?	Water is applied according to the water holding capacity of the soil, soil moisture measurement, vine demand, and weather conditions at that time. AND Application time is calculated according to the application rate of the system and the measured depletion in the root zone.	Water is applied according to the water holding capacity of the soil, vine demand, and weather conditions at that time. Soil moisture is not measured. AND Application time is calculated according to the application rate of the system.	Irrigation water is applied systematically when conditions are dry.	Irrigation water is applied systematically without regard to weather conditions, or water holding capacity of the soil.				

SUSTAINABLE VITICULTURE • IRRIGATION MANAGEMENT

Vine water demand is highest as leaf area increases in spring and summer. Similarly, large canopies such as divided or minimally pruned canopies have higher water requirements than smaller canopies such as those in VSP training. According to Dr. Alan Lakso, a Concord vine with a full canopy needs about 4 - 4.5 gal/day in July and August. It is likely that vinifera vines with smaller canopies require less water.

Once the application rate of the system has been determined, (see previous sidebar) operating time can be determined. This is the length of time necessary to replace the water a single vine uses per day. Assuming a peak consumptive use for vinifera grapes is between 0.2 and 0.25 inches per day, calculation of irrigation time is possible by estimating the rooting area of the vine in square feet. For example: Vines are planted 4' x 8', estimated rooting area is 32 ft² and estimated peak consumptive use is 0.23 in/day.

 $0.23 \text{ in/day}/12 \text{ in/ft } x 32 \text{ ft}^2 x 7.48 \text{ gal/ft}^3 = 4.59 \text{ gal/vine/day}$

<u>4.59 gal/vine/day</u> = ____hrs of operation # emitters/vine x gal/hr/emitter To minimize leaching, do not exceed calculated operation time for peak consumptive use.

Peak consumptive use (PCU): Weather data was collected from a weather station located on a LI (Long Island) sod farm. The data was entered into an irrigation-scheduling model (Blaney Criddle Method) from Michigan State to calculate consumptive use for specific crops. PCU is the average daily amount of water consumed in evaporation from the soil and transpiration through the leaves in the photosynthetic process by a crop during the 6 - 10 days of the highest water consumption of the season. It generally occurs as the crop is nearing harvest, when vegetation is most abundant and temperatures are high.

V. WEED MANAGEMENT

Weed management is more properly termed "vineyard floor management", as distinct management strategies are implemented for the region under the trellis and the row middles. Vegetation under the trellis must be managed to minimize competition with vines from the key bloom-to-veraison growth stage, after which weed growth has less impact on vine function. Studies have shown that crop losses due to poor weed management are higher than losses due to diseases and insects combined. Row middles can be managed to influence both nitrogen and soil water availability and hence vine vigor. While frequent rainfall often promotes growth of weeds, it also permits establishment of cover crops that can help growers manage water use to limit excess vigor.

This section emphasizes that integration of mechanical and cultural practices with judicious choice and usage of herbicides to achieve a grower's management objectives. Proper choice and timing of preemergence and post-emergence herbicides, consideration of tillage, and other non-chemical control methods, proper care and calibration of weed sprayers, and use of cover crops and mulches in row middles where appropriate are covered in this section, along with critical vine development stages (bloom-to-veraison) for reducing weed competition under the trellis.

Photography credits: Bruce Perrygo and Tim Stephens, MGGA members

As part of environmentally responsible vineyard management, it is not necessary to have pristine weed control throughout the season. The most critical time for weed control is budbreak through veraison, after which some additional weed growth is not viticulturally harmful. However, weeds should not interfere with harvest activities, contaminate harvested crop, nor be allowed to proliferate to the point that future weed control is difficult.

WEED MANAGEMENT

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is vineyard monitored	Grower or vineyard	Grower or vineyard	Weeds are monitored	Weed composition	
and mapped for	manager monitors weeds	manager monitors weeds	periodically.	monitored rarely, if	
weeds?	at least 3 times during the	periodically.		ever.	
	season.	AND			
	AND	Weed infestations are			
	Weed infestations are	recorded and/or mapped.			
	recorded and mapped.				

The best way to prevent new weed problems is to keep good records. *Weeds fo the Northeast* (Phillips 1956) is an excellent reference book for identifying weed species. *Also, weed photos can easily be found on the internet, try searching:* http://www.wssa.net/.

What percentage of	>75% of the area between	67-75% of the area	50-66% of the area	< 50% of the area	
the area between rows	rows contains permanent	between rows is covered.	between rows is	between rows is	
contains permanent	ground cover.		covered.	covered.	
ground cover?				OR	
In vineyards more than				Row middles are tilled.	
one year old.					

The maximum amount of soil should be covered to prevent erosion and foster non-competitive species diversity.

WEED MANAGEMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Are non-chemical	Non-chemical techniques	Non-chemical techniques	Herbicides are the only	Herbicides are the			
weed management	are used exclusively.	are used in combination	form of weed control	only form of weed			
techniques being	AND	with post-emergence (foliar-	under the trellis.	control under the			
used?	Only minimally disruptive	applied) herbicides.	AND	trellis.			
	cultivation under the	AND	Only minimally disruptive	AND			
	trellis is used. Deep	Only minimally disruptive	cultivation under the	Frequent, deep			
	cultivation or tillage is	cultivation under the trellis	trellis is used. Deep	cultivation is used.			
	avoided.	is used. Deep cultivation or	cultivation or tillage is	OR			
	AND	tillage is avoided.	avoided.	Erosion is not			
	Erosion is controlled.	AND	AND	controlled.			
		Erosion is controlled.	Erosion is controlled.				
In planning a weed	No herbicides are used.	Foliar-applied (post-	Soil-applied pre-	All-purpose tank			
control program,		emergence) herbicides are	emergence herbicides are	mixes and standard			
how are control		the only herbicides used.	used.	rates are used for all			
methods and rates		AND	AND	vineyard blocks.			
chosen?		Herbicides are chosen based	Rates are based on weed				
		on weed species present.	species and soil type.				
		AND					
From Ohmart and		Rates are based on weed					
Matthiasson (2000).		species and size.					

WEED MANAGEMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Are the leaching potential of	Simazine (Princep), diuron (Karmex), and	Simazine, diuron, and norflurazon are used less	Simazine, diuron, and norflurazon are used	Simazine, diuron, and norflurazon are used				
herbicides and soil characteristics considered in choosing soil-applied herbicides?	norflurazon (Solicam) are not used.	than annually but are not used at all in gravelly or sandy soils with high leaching potential or in areas with high water tables.	annually but are not used at all in gravelly or sandy soils with high leaching potential or in areas with high water tables.	regardless of soil leaching potential.				
From Ohmart and Matthiasson (2000).								
Simazine and other herbicides have been found in the waters of the Chesapeake Bay and its tributaries and may affect the growth of important submerged aquatic vegetation (SAV).								

WEED MANAGEMENT									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
What type of herbicide sprayer is used?	Application equipment that increases deposition and reduces drift is used (e.g. CDA shielded sprayer).	A standard herbicide sprayer equipped with air induction nozzles and/or a shield in order to increase deposition and reduce drift is used.		Application equipment is not designed to increase deposition or reduce drift.					
Controlled Droplet Ap This technology allows post-emergence mate with dense stands of v Air induction nozzles (Controlled Droplet Applicators (CDAs) use a spinning disc rotary atomizer that creates a mist of similar size droplets under the dome or shield. This technology allows ultra-low volumes to be used, minimizes drift, and places the herbicide efficiently. Efficient and timely placement of post-emergence materials may allow a reduction in rate of material used. Practical experience dictates that these sprayers are less effective with dense stands of weeds. Air induction nozzles (discussed in the <i>NY and PA Pest Management Guidelines for Grapes</i>) are well proven with herbicide application and are								
Is the herbicide	Sprayer is serviced and calibrated before the start of	Sprayer is serviced and	Sprayer is calibrated	Sprayer is not					
properly?	each season and prior to each application during the season.	each season.	after repairs.						

WEED MANAGEMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Are residual broadleaf and grass herbicides rotated to reduce the potential for resistant weeds?	Every third year, herbicides are rotated to another chemical family.	Every fourth year, herbicides are rotated to another chemical family.		Herbicides used are always the same.				
This is primarily a weed and triazines (Princep) The length of control o populations are though	This is primarily a weed resistance management strategy. However, weeds can easily develop cross-resistance to substituted ureas (Karmex) and triazines (Princep). Therefore, oxyfluorfen (Goal) or flumioxazin (Chateau) should be a rotational choice. The length of control of grass weeds during the season decreases after several years of reapplication of the same material. Soil microbe populations are thought to build up over time, which consume the herbicide molecules as a food source.							
Is the amount of spring residual (pre- emergence) herbicide adjusted based on soil characteristics?	Based on knowledge of soil types within your vineyard and characteristics of soil- applied herbicides, application rates are adjusted to apply proper amounts in each vineyard block.	Based on knowledge of soil types within your vineyard and characteristics of soil- applied herbicides, application rates are adjusted to apply proper amounts for the entire vineyard.		The historical rate and/or the maximum-labeled rate are applied throughout the vineyard. Soil type and herbicide characteristics are ignored.				

WEED MANAGEMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
What types of post- emergence herbicide are used?		Low toxicity and/or rapid breakdown in environment (e.g. Roundup Ultra, Touchdown, Poast, Rely, Aim or Scythe).		High applicator toxicity or long soil half-life. e.g. Gramoxone (paraquat)				
Paraquat is persistent in found that initial application	the soil for more than o tion is harmful to benef	ne year after application. Althou icial microbes.	ıgh generally unavaila	ble to soil microbes, some	e studies have			
How often are post- emergence herbicides applied?	Applied once at appropriate time or not at all.	Applied twice at appropriate times.	Applied 3 times.	Applied more than 3 times.				
It is important to properl	y time post-emergence	herbicide applications. An inter	net search will provid	e a variety of guides.				

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is spot treatment of	No post-emergence	Vineyard weed scouting is used		Spray is applied to the	
to reduce the total	herbicide is needed or applied.	to identify weed patches. AND		entire vineyard without regard to the	
amount of post- emergence herbicide		Visible weeds are treated with a manual hand gun sprayer.		presence of visible weeds.	
used?		OR Machine sprayer is manually turned off when no weeds are present.			

New technology allows infrared sensors to detect the difference between weeds and bare ground. Sensors tell the sprayer to apply only to the weeds and not to the bare ground. This technology is not yet sufficiently tested in vineyards.

VI. PEST MANAGEMENT

Managing insect and disease pests is one of the key tasks of any vineyard manager and involves numerous decisions throughout the growing season. Effective management involves monitoring weather conditions, correctly identifying insects and disease pathogens present in a vineyard, taking account of differences in varietal susceptibility to diseases, and choosing appropriate control methods, including pesticides. Collective use of these multiple tactics for making informed decisions forms the basis for Integrated Pest Management (IPM) programs that effectively and economically control pests while minimizing environmental risk.

This section emphasizes correct pest identification, use of scouting and treatment thresholds for insect pests, phenology (vine development)-based disease management, integration of canopy management into disease management, resistance management and improved sprayer technology to protect vines from pests.

Photography credits: Bruce Perrygo and Tim Stephens, MGGA members

PESTICIDE APPLICATION EQUIPMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
What type of canopy sprayer is used?	Application equipment is used that increases target deposition (i.e. reduces drift) and allows for a reduction in the amount and/or rate of pesticides used [e.g. a) recycling sprayer, b) tower sprayer, c) directed deposition sprayer].	Application equipment is used that improves deposition and reduces drift [e.g. a) airblast sprayer with low drift nozzles such as air induction nozzles, b) modified airblast sprayer with deflectors, c) nozzle orientation adjusted to improve deposition].		The application equipment does not address drift (e.g. an unmodified airblast sprayer).				

The NY and PA Pest Management Guidelines for Grapes (http://ipmguidelines.org/grapes) provides an overview of spray drift management and nozzle types, including air induction nozzles. Air induction nozzles are well proven with herbicide applications and are recommended. Canopy application trials have been successful but further season-long trials are still needed.

Top and bottom deflectors should be fitted to airblast sprayers to funnel the pesticide-laden air into the canopy. Correct nozzle orientation (to overcome the effects of the uneven airblast resulting from fan rotation) allows the spray plume to target the canopy.

PESTICIDE APPLICATION EQUIPMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Are the selected	Appropriate size nozzles are	Appropriate size nozzles are		Nozzle size is not			
nozzles appropriate	chosen. For canopy sprays,	chosen. For canopy sprays,		appropriate for canopy			
for use?	150-200 micron nozzles are	150-200 micron nozzles are		sprays.			
Are they replaced	recommended. This is	recommended. This is known		AND			
when worn?	known as a "fine" spray	as a "fine" spray		Nozzles are not			
	classification.	classification.		replaced when worn or			
	AND	BUT		damaged.			
	Nozzles are replaced when	Nozzles are not replaced					
	worn or damaged.	when worn or damaged.					

Dr. Andrew Landers notes that for nozzles < 150 microns in size, droplets are likely to drift, and if temperature is high and humidity low, droplets will evaporate. All nozzles can be purchased with different spray classification characteristics from "fine" to "coarse". These classifications appear in nozzle catalogs and will soon appear on pesticide labels. If nozzle output exceeds manufacturer recommendations by >10%, the nozzles need replacing.

PESTICIDE APPLICATION EQUIPMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Is the canopy sprayer	Sprayer is serviced and	Sprayer is serviced and	Sprayer is serviced	Calibration is done				
calibrated properly?	calibrated before the start of	calibrated before the start	and calibrated before	infrequently or not				
	each season.	of each season.	the start of each	at all.				
	AND	AND	season.					
	Sprayer is recalibrated for major	Sprayer is recalibrated for						
	growth stages and/or different	different types of						
	types of applications when	applications when amounts						
	amounts of air or liquid are	of air or liquid are changed						
	changed and/or nozzle	or nozzle orientation is						
	orientation is adjusted (e.g.	adjusted (e.g. spray						
	spray directed at canopy vs.	directed at canopy vs.						
	clusters).	clusters).						
	AND							
	Calibration is repeated at least							
	once during the growing season.							
The annual <i>NY and PA</i> This should be used in	The annual NY and PA Pest Management Guidelines for Grapes (http://ipmguidelines.org/grapes) provides an overview of sprayer calibration. This should be used in concert with recommendations from the manufacturer of your sprayer.							
Are environmental	No spraying is done if winds are	Most of the time spraying is		Spraying is done in				
conditions	>10 mph unless using a sprayer	not done if the winds are		conditions where				
considered before	that is designed/modified to	>10 mph unless using a		significant drift will				
deciding to spray?	improve deposition and reduce	sprayer that is		occur.				
	drift.	designed/modified to						
		improve deposition and						
		reduce drift.						

				PESTICIDE APPLICATION EQUIPMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK							
Is the canopy sprayer Sprayer maintained properly? addit work.	ver is serviced annually in ition to necessary repair . Routine maintenance is conducted after the conclusion of each application.	Sprayer is serviced annually in addition to necessary repair work.		Sprayer is not serviced annually. Service occurs only when equipment breaks.								

The annual New York and Pennsylvania Pest Management Guidelines for Grapes (http://ipmguidelines.org/grapes) provides a pre-season checklist for sprayers, as well as a routine maintenance checklist.

Additional comments from Dr. Andrew Landers: Tractor speed should be fast enough to provide a good output per hour while ensuring canopy penetration; speeds too fast result in poor penetration in a full canopy, and moving too slowly results in poor output per day. Growers should also minimize the volume of air displaced by their sprayer, if possible. The airflow should be adequate to displace the air in the canopy with pesticide-laden air from the sprayer. The volume of spray should provide acceptable coverage, though the grower should not spray to the point where the leaves are dripping. Grower should apply sufficient spray for the developing canopy as the season progresses. Alternative row spraying (a common early season practice with airblast sprayers) provides inadequate coverage in many instances, and where disease pressure is highest, research has shown that spraying every row is preferable.

PRUNING AND	DORMANT VINEY	ARD PRACTICES			
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is pruning done in a	Wood infected by significant	Wood infected by	Wood infected by	Pruning is done	
way to minimize	amounts of overwintering	significant amounts of	significant amounts of	without regard to the	
overwintering	fungi is pruned off to	overwintering Phomopsis	overwintering	presence of	
pathogens and insects?	minimize sources of	cane and leaf spot, black	Phomopsis cane and	overwintering	
	inoculum. Old cluster stems	rot, and/or powdery	leaf spot, black rot,	inoculum, and spray	
	may harbor overwintering	mildew is sometimes	and/or powdery mildew	program is not	
	Botrytis; mummified fruit –	pruned off.	is sometimes pruned	adjusted.	
	black rot and/or Phomopsis;	AND	off.		
	scabby spurs and canes	Spray program is adjusted	BUT		
	(particularly the basal 2-3	to reflect the level of	Spray program is not		
	nodes) – Phomopsis.	overwintering inoculum.	adjusted to reflect the		
	AND		level of overwintering		
	Spray program is adjusted to reflect the level of overwintering inoculum.		inoculum.		

PRUNING AND DORMANT VINEYARD PRACTICES							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Can the Vineyard	The Vineyard Manager can	The Vineyard Manager can		The Vineyard Manager			
Manager identify	identify Eutypa dieback and	identify Eutypa dieback and		cannot identify Eutypa			
Eutypa dieback and	other trunk cankers. Where	other trunk cankers. Action		dieback and/or			
other trunk canker	Eutypa and other trunk cankers	against Eutypa and/or other		suspicious trunk			
symptoms?	are suspected, vines are	suspicious trunk symptoms		cankers, and other			
	double pruned and/or cut well	has been done but not in a		suspicious symptoms			
	below the canker. Vines are	thorough manner. Dead		are ignored. Dead wood			
	flagged during the growing	wood and prunings are		and prunings are not			
	season for future observation.	sometimes removed from		removed from the			
	Dead wood and prunings are	the vineyard and disposed		vineyard.			
	removed each year and	of by burying or burning but					
	disposed of by burying or	not on a yearly basis.					
	burning.						

According to Dr. Wayne Wilcox (Dept. of Plant Pathology, NYSAES, Geneva), Eutypa canker has long been known as a cause of declining grapevines. More recently, vine decline has been recognized as a disease complex associated with a number of potential trunk-infecting fungi. Eutypa and some other fungi typically infect through pruning wounds, and then cause cankers that slowly expand down and around the infected arm, cordon, or trunk. A cross section through such cankers typically reveals a distinctive wedge-shaped zone of dead wood radiating from the center of the cylinder. Another group of vine-decline fungi do not cause such cankers. Rather, cross sections through trunks of symptomatic vines often display black spotting or gumming whereas longitudinal sections reveal black streaks through the water-conducting vessels of the wood. Current research suggests that decline symptoms from these infections are unlikely to occur unless the vines are subjected to stress. Therefore, viticultural practices designed to minimize vine stress should help to prevent/minimize the occurrence of such forms of vine decline. These practices would include timely irrigation, balanced nutrition, minimized trunk injury from machine implements and so forth.

PRUNING AND DORMANT VINEYARD PRACTICES							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Can the Vineyard Manager identify symptoms of crown gall infection?	The Vineyard Manager can identify crown gall. Vines, or portions of vines, rendered unproductive by crown gall are either removed or a new trunk is trained up. AND Preparations designed to rid the vine of crown gall are NOT used as efficacy has been poor in both	The Vineyard Manager can identify crown gall using fact sheets. Vines rendered unproductive by crown gall are either removed or a new trunk is trained up. AND Preparations designed to rid the vine of crown gall are NOT used as efficacy has been poor in both		The Vineyard Manager either cannot identify the presence of crown gall, has not addressed crown gall problems in the vineyard, or has addressed the problems with topical preparations that have been proven to have poor efficacy in both research and grower trials.			

Crown Gall is a bacterial disease of grapevines that results in tumorigenic growth on trunks. According to Dr. Tom Burr (Dept. of Plant Pathology, NYSAES, Geneva) scion and rootstocks differ in their susceptibility to crown gall. In addition, the younger the vine is at infection, the greater the impact on the vine. Crown gall compromises the wound healing process by preventing normal differentiation of cells that are generated in the cambial zone following wounding.

PRUNING AND DORMANT VINEYARD PRACTICES								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Are dormant fungicide sprays applied? [Note – dormant and post- harvest are two distinct time periods. Dormant refers to the absence of green tissue and leaves.]	Due to data indicating marginal benefits and high costs, dormant sprays are NOT routinely applied to the vineyard.		A single dormant spray is applied.	Two or more dormant sprays are applied to vines with the general goal of reducing overwintering inoculum of powdery mildew or Phomopsis.				

According to Dr. Wayne Wilcox, a single dormant spray MAY be appropriate if extreme levels of powdery mildew or Phomopsis are present on canes, but only if spray coverage is maximized with an efficient sprayer. Any benefits derived from such a spray are highly unlikely if a low efficiency sprayer, such as an unmodified airblast sprayer, is used.

Experiments conducted in upstate NY in the 1980s showed that dormant application of lime sulfur reduced the viability of overwintering inoculum of the powdery mildew and Phomopsis fungi, and sometimes improved the efficacy of the standard spray program that followed. However, these trials were conducted using a rate of over 30 gal/acre of lime sulfur in 300 gal/acre of water. (Note that lime sulfur is not a mix of lime + sulfur but rather calcium polysulfide, a completely different material.) This rate is extremely expensive and impractical. Lower rates (e.g. 10-12 gal lime sulfur in 100 gal water per acre) have been advocated in California, but data on their efficacy is very limited. In a recent NY trial, they provided only modest benefits at a relatively high cost. Most conventional fungicides should have little or no activity if applied during the dormant season, nor are they labeled for use at that time of year.

DISEASE MANAGEMENT								
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK			
Are proper canopy management practices followed to minimize fungal disease pressure?	The canopy is managed following recommendations in this guide to facilitate light, air, and spray penetration. See the Vineyard Management section.	The canopy management recommendations in this guide are sometimes followed.		Canopy management recommendations in this guide are mostly ignored. The canopy is dense with poor light penetration and poor drying.				
When planning a fungal disease management program, is block history taken into account?	Historical susceptibility to disease is taken into account when planning a fungal disease management program.			Historical susceptibility to disease is not taken into account when planning a fungal disease management program.				

DISEASE MA	NAGEMENT				
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
What actions are	Disease management	Disease management	Disease management	Disease management	
taken to minimize	consists of 2 sprays, 1 at the	consists of 2 sprays, 1 at	consists of 2 sprays	does not begin until	
disease pressure in	immediate pre-bloom period	the immediate pre-	around the bloom period	after bloom, requiring	
all variety types?	and another post-bloom with	bloom period and	but the interval between	use of an eradicant	
	spray intervals not exceeding	another post-bloom with	sprays exceeds 14 days.	material in an attempt	
	10 to 14 days.	spray intervals not		to manage established	
	AND	exceeding 10 to 14 days.		infections.	
	Spraying focused on periods	AND			
	of peak cluster susceptibility.	Spraying focused on			
	AND	periods of peak cluster			
	Disease management	susceptibility.			
	concentrates on limiting				
	infection by primary				
	inoculums of black rot,				
	powdery mildew, downy				
	mildew, and Phomopsis cane				
	and leaf spot.				

Overwintering inoculum of black rot and Phomopsis should be minimized by pruning and disposing of infected canes and bunches during the dormant season. Fungicide sprays should include a minimum of an immediate pre-bloom application and a post-bloom application 10-14 days later with materials providing protection against all four diseases. For varieties (e.g. Niagara) and locations subject to severe Phomopsis infections, an effective material is often required soon after cluster emergence as well. The need for additional applications (either pre- or post-bloom) are determined each year depending on weather conditions, over-wintered inoculum potential, and the presence of current-season infections as determined by scouting.

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Can the Vineyard Manager identify fungal and viral disease symptoms on shoots, leaves and fruit?	The Vineyard Manager can identify on leaves, shoots, and fruit- all of the following diseases: • Fungal – black rot, Phomopsis, powdery and downy mildews and Botrytis • Viral – leaf roll, fanleaf • Any unknown disease is ID'd with outside input. AND Vineyard Manager has knowledge of life cycles and crop susceptibility at different times in the growing season.	The Vineyard Manager can identify most of the aforementioned fungal and viral disease symptoms and life cycles with the aid of publications and fact sheets.	The Vineyard Manager cannot identify more than half of the fungal and viral disease symptoms and does not use publications or fact sheets to ensure proper identification.	The Vineyard Manager cannot identify ANY symptoms of fungal and viral diseases.	

Photos can be found at http://www.nysipm.cornell.edu/factsheets. These publications also have good photos: Grape Pest Management, Compendium of Grape Diseases, and Grape IPM in the Northeast. See the references at the end of the workbook for details.

DISEASE MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
How are virus- infected vines dealt with?	Vines diagnosed with viral infection are immediately removed if the vines are not producing sufficient quality or quantity of fruit. If vineyard removal is necessary, the site is replanted with a resistant rootstock or left fallow for a minimum of 3 years. When vines are removed, as much of the root system as possible is removed.	Vines diagnosed with viral infection are immediately removed if the vines are not producing sufficient quality or quantity of fruit. If vineyard removal is necessary, the site is left fallow for less than 3 years.	Even if the vines are not producing sufficient quality or quantity of fruit, there is no systematic removal of virus-infected material and/or there is no attempt to renovate sites where virus-infected vines grow.	Nothing is known of viruses and therefore no action plans are in place.		

DISEASE MANAGEMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Is scouting done for fungal and viral diseases?	Scouting is done every other week or at key phenological times preferably by the same person. Scouting results are recorded and entered into a historical database. Vines are scouted May through September.	Scouting is done occasionally, often targeting hot spots. Records of scouting results are kept and entered into a historical database.	Scouting is done informally (e.g. tractor scouting) or on an irregular basis. No records are kept.	Scouting is not done.			

Monitoring of fungal and viral diseases requires vigilance. Particularly with fungal diseases, it is important to address any problems as soon as possible. Remedial steps tend to be much more effective in the early stages of infection vs. during a raging epidemic. Ideally, in a given vineyard block, 5% of the vines or a minimum of 10 vines are examined weekly for signs of disease. These vines can be chosen using historical records to ensure that hotspots are the first to be scouted. Other options are randomly chosen vines or vines that are permanently tagged. Permanent tags offer the additional advantage of charting a range of measurements (e.g. vine pruning weight, disease status, etc.) from year to year. Both foliage and fruit should be examined for signs of disease.

DISEASE MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Does the Vineyard Manager provide or arrange training of field staff in disease and insect identification?	The Vineyard Manager annually provides training to field staff on identification of grape diseases and insects.	Training has been provided once or twice but not on a regular basis.		Training is not done.		
Are fungicides with low leaching potential selected for use?	Materials with high leaching potential are avoided.	Materials with high leaching potential are avoided except where no alternatives exist.		Leaching potential is not taken into account when selecting fungicides.		

DISEASE MANAGEMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Where possible, are reduced risk fungicides, biopesticides, minimum risk fungicides and/or organic fungicides used?	Where practical, these materials are used for control of fungal diseases and total >50% of the spray materials used.	These materials are used for control of fungal diseases and total at least 20% of the spray materials used.	These materials are used once or twice.	These materials are never used.			

See **www.vinebalance.com** for a description of reduced risk, minimum risk, organic and bio-pesticides.

- For a complete list of minimum risk materials, go to: http://www.epa.gov/oppbppd1/biopesticides/regtools/25b_lis t.htm
- For a complete list of bio-pesticide materials, go to: http://www.epa.gov/oppbppd1/biopesticides/index.htm

The OMRI list of certified organic materials can be accessed via the web at **www.omri.org**.

When choosing a spray material, consider both the potential efficacy against the target pest, as well as, other aspects of the compound. Copper compounds, for example, are effective downy mildew (and to a lesser extent, Phomopsis and black rot) materials that are allowed in organic programs. Unfortunately, in other grape growing regions worldwide, copper use has been banned (outright bans as well as bans in organic production exist) due to concerns about the accumulation of this heavy metal in soils. Thus in this particular circumstance, copper would be considered an organic option (the OMRI approved labels) but should be used sparingly and only when necessary.

DISEASE MANAGEMENT

Additional comments from Dr. Wayne Wilcox: Reducing the application rates of fungicides can save money and reduce the potential for shortterm environmental pollution. However, this is not a long-term sustainable practice for certain fungicides. Specifically, reducing rates of the DMI fungicides (also called SIs or sterol inhibitors - Elite, Nova, Procure, and Rubigan) and the strobilurins (Abound, Flint, Sovran) is known to promote the development of resistance to these materials. In contrast, reducing the rates of traditional protectant materials (Dithane, Manex, Penncozeb, coppers, sulfurs, etc.) has no impact on resistance development but can shorten the duration of their active period. Also, note that pesticide rates are typically expressed on a per-acre basis for both legal purposes and convenience, although target organisms actually respond to a rate per unit area of canopy volume. Thus, a rate of 3 oz/acre applied to a thin canopy early in the season, may provide the same level of activity as 6 oz/acre applied to a thick canopy in mid-summer. In short, efforts to reduce pesticide rates should be governed not only by the particular materials in use but also by the canopy volume.

DISEASE MAN	NAGEMENT				
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is a Botrytis control	A Botrytis management plan follows	4-5 of the 6	3 or fewer of the 6	Botrytis Management	
program in place for	these points:	considerations are	considerations are	relies on fungicides	
susceptible	 Conscientious canopy 	followed for Botrytis	followed for Botrytis	alone.	
varieties?	 management is done; esp. leaf pull to improve light, air, and spray penetration into the cluster zone. Cluster thinning is done in such a way that clumps of overlapping clusters are loosened/thinned. Only susceptible varieties are treated, unless extreme weather conditions warrant otherwise. Particularly during bloom, a treatment is applied only if weather conditions warrant. Sprays are directed at the cluster zone; GPA of water and the need for a surfactant follow pesticide label recommendations. N fertilizers applied so that vine growth is balanced. 	control.	control.		

INSECT AND MITE MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Can the Vineyard Manager identify insect and mite pests and the damage they cause?	The Vineyard Manager can identify all of the following insect/mite pests and the damage they cause: • Major Insects • Minor Insects • Mites • Any unknown pest is ID'd with outside help • VM has knowledge of crop susceptibility and insect life cycles.	Using fact sheets and websites, the Vineyard Manager can identify a majority of the insect and mite pests, and the damage they cause, and has knowledge of crop susceptibility and insect life cycles.	The Vineyard Manager has difficulty identifying more than 3 insect and mite pests and the damage they cause.	The Vineyard Manager cannot identify ANY insect pests or the damage they cause.		

Insects are found in regions noted – if no region is cited, insects are found in all regions:

Major Insects: Grape Leafhopper (FL), Potato Leafhopper (LI), Japanese Beetles, Grape Berry Moth, and Rose Chafer. Minor Insects: Cutworms, Flea Beetles, Thrips, Aphids, Girdlers, Gallmakers, Scale Insects, Grape Plume Moth, Grape Cane Borer, Banded Grape

Bug (FL & LE), Grape Rootworm (FL).

Mites: European Red Mite, Two Spotted Spider Mites.

Photos can be found at the following web address: http://www.nysipm.cornell.edu/factsheets. The following publications (see the reference section for details) also have good photos: Grape Pest Management, Compendium of Grape Diseases, and Grape IPM in the Northeast.

Insect and Mite Management							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Are dormant miticide sprays applied?	Due to the data indicating marginal benefits, dormant sprays are NOT applied to the vineyard for mite control.		A single dormant spray of a labeled horticultural oil is applied with the goal of reducing the viability of European Red Mite eggs. A minimum of 100 GPA water is used or amount of water as per label directions.	More than one dormant oil or other insecticide spray is applied to vines, all in accordance with pesticide labels.			

Dormant oils, when applied properly, can provide some control of overwintering European Red Mites (ERM) in tree fruit, particularly apples. High water gallonage (200-300 gal/acre) and rates based on time of year/stage of growth are used. In apples, mites become progressively more susceptible to control with dormant oil as spring arrives.

Horticultural oil research has been conducted statewide. Sprays were applied at multiple timings with a backpack sprayer. Treatments were unsuccessful in controlling subsequent mite populations. Grower experience with airblast sprayers has been similarly disappointing. The location of mites in cracks and crevices and under bark makes control much more difficult than tree fruit. For areas with potentially high overwintering ERM populations, an efficient sprayer that achieves excellent coverage would be the best choice for dormant oil application. Coverage must be sufficient to penetrate areas where overwintering mites reside. Be sure to use an oil product labeled for dormant use in vineyards.

INSECT AND MITE MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Does scouting for insect and mite pests take palce?	Scouting takes place on a regular basis (every other week and/or at the first signs of the pest) for major insect pests such as European Red Mite, Potato Leafhopper, Japanese Beetles, Grape Berry Moth, Grape Leafhopper, and Rose Chafer.	Informal scouting or scouting less frequent than every other week takes place.		Scouting is not done for insect and mite pests.		
See www.vinebala	nce.com for a general description o	f scouting goals and technic	ques.			
Are insect/mite thresholds considered when making a treatment decision?	Where thresholds exist, scouting results are used to help determine the need for a treatment. Currently, informal thresholds exist for Grape Berry Moth, European Red Mite, Potato Leafhopper, Grape Leafhopper, Climbing Cutworm, and Flea Beetles.	Thresholds are sometimes used to help determine the need for a treatment.	Thresholds are disregarded when deciding the need for a treatment.	An insecticide is applied routinely with most spray applications.		
Suggestions for thr Flea Beetle.	esholds can be found in the article (describing scouting techniq	ues. One additional thr	eshold - 2% infested bud	ls for Grape	

INSECT AND MITE MANAGEMENT						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
Is spot treatment used for insect/mite infestations?	If infestations are localized, only the vineyard areas with economically damaging levels of a pest are treated. For example, only the block by the wooded edge is treated for berry moth; blocks A & B but not C are treated for ERM.	Spot treatment is sometimes done.		Spot treatment is never done. If an insect or mite outbreak occurs, the entire vineyard is treated.		
Where practical, are reduced risk, minimum risk and/or organic insecticides and miticides or biopesticides used?	These materials are always used for insect/mite control.	Where effective and economically feasible, these materials are used for insect and mite control.		These materials have not been used during the growing season for insect/mite control.		

See www.vinebalance.com for more information on reduced risk, minimum risk, organic and biopesticides. For a complete list of minimum risk materials, go to http://www.epa.gov/PR_Notices/pr2000-6.pdf. For a complete list of biopesticide materials, go to http://www.epa.gov/pesticides/biopesticides/ingredients/index.htm.

The OMRI list of certified organic materials can be accessed via the web at **www.omri.org**.

When choosing a spray material, consider both the potential efficacy against the target pest as well as other aspects of the compound. Rotenone, for example, is an organically approved insecticide. It is also moderately toxic to ERM predators and highly toxic to fish, and in fact, it is used to remove unwanted fish populations. The economic sustainability of a low risk material must also be considered. It is not sustainable if it is a prohibitively expensive treatment, particularly one with marginal benefits in terms of pest control.

	1 - Low Risk	2	3	4 - High Risk	YOUR RANK
Is the impact of a material on European Red Mite (ERM) predators considered when making a treatment decision?	The spray materials are adjusted so that only pesticides (fungicides, insecticides, and miticides) with a low to moderate negative impact on ERM predators are used.	Only a few pesticides in the spray schedule are known to be detrimental to mite predators.		More than half of the spray materials used is rated as harmful to mite predators.	
The selection of spray m their populations and pr following chart	naterials that are less harmful to ovide biological control of ERI	to <i>Typhlofromus pyri,</i> a mair M populations. The impact c	n predator of Europea of various pesticides o	n Red Mites (ERM), may he n the survival of <i>T. pyri</i> is s	elp to maintain seen in the

TOXICITY OF VINEYARD PESTICIDES TO *TYPHLODROMUS PYRI*, PREDATOR OF EUROPEAN RED MITE *PANONYCHUS ULMI*

FUNGICIDES							
MATERIAL	Active Ingredient	CLASS OF MATERIAL	EFFECT ON T. PYRI				
Abound	azoxystrobin	strobilurin	L?				
Captan 50 WP, 80 WP, Captec 4L	captan	carboximide	L				
Carbamate WDG	ferbam	DMDC - Dimethyldithiocarbamate	M-H?				
Champ, Kocide	copper hydroxide	fixed copper	L?				
Dithane, Manex, Penncozeb (many labels)	mancozeb, maneb	EBDC - ethylenebisdithiocarbamate	M-H				
Elevate 50 WDG	fenhexamid	hydroxyanilide	L?				
Elite 45 DF	tebuconazole	sterol inhibitor	L?				
Flint 50 WG	trifloxystrobin	strobilurin	L				

FUNGICIDES (CONTINUED)						
MATERIAL	Active Ingredient	CLASS OF MATERIAL	EFFECT ON T. PYRI			
JMS Stylet Oil	paraffinic oil	horticultural oil	L			
Kaligreen	potassium bicarbonate	potassium salt	L?			
Nova 40W	myclobutanil	sterol inhibitor	L			
Nutrol	monopotassium phosphate	potassium salt	L?			
Procure	triflumizole	sterol inhibitor	L?			
Ridomil Gold MZ Ridomil Gold/Copper	mefanoxam + mancozeb or copper	phenylamide + EBDC or fixed copper	M-H – MZ L-M – Gold			
Rubigan	fenarimol	sterol inhibitor	L			
Rovral 50 WP	iprodione	dicarboximide	L			
Serenade	Bacillus subtilis	biological	L?			
Sovran	kresoxim-methyl	strobilurin	L			
Sulfur - WP, DF, F formulations	sulfur	elemental	L-M?			

FUNGICIDES (CONTINUED)						
MATERIAL	ACTIVE INGREDIENT	CLASS OF MATERIAL	EFFECT ON T. PYRI			
Vangard 75WG	cyprodinil	anilinopyrimidine	L?			
Ziram 76DF	ziram	DMDC	M-H?			
INSECTICIDES AN	D MITICIDES					
MATERIAL	Active Ingredient	CLASS OF MATERIAL	EFFECT ON T. PYRI	Comments		
Acramite	bifenazate	carbazate	L-M	miticide		
Agri-Mek	abamectin	macrocyclic lactone	М	miticide		
Biobit, DiPel	Bacillus thuringiensis	biological	L	GBM specific		
Danitol	fenpropathrin	pyrethroid	н	broad spectrum		
Imidan	phosmet	carbamate	L-M	broad spectrum		
Kelthane	dicofol	chlorinated hydrocarbon	М	miticide		
Lannate	methomyl	carbamate	Н	broad spectrum		

INSECTICIDES AND MITICIDES (CONTINUED)						
MATERIAL	ACTIVE INGREDIENT	CLASS OF MATERIAL	EFFECT ON T. PYRI	Comments		
Nextar	pyridaben	pyridazinone	М	miticide		
Provado	imidacloprid	chloronicotinyl	L	Potato Leafhopper or Mealybug		
M-Pede	potassium salts of fatty acids	insecticidal soaps	L	Leafhopper, Beetles, Mites		
Various products.5	rotenone	plant derived	М	broad spectrum		
Sevin	carbaryl	carbamate	L-M?	broad spectrum		
Thiodan/Thionex	endosulfan	chlorinated hydrocarbon	L	broad spectrum		
Vendex	fenbutatin-oxide	organotin	L	miticide		

? - Indicates the rating is a best guess based on field observations and knowledge of the product.

<u>Toxicity ratings</u>: Low (< 30% mortality after 48 hrs)

Medium (30-70% mortality after 48 hrs)

High (>70% mortality after 48 hrs)

References:

Apple IPM, A Guide for Sampling and Managing Major Apple Pests in New York State. NYSIPM Publ. No 207, 1993.

Personal communication from Prof. Marc Baillod (Switzerland), 1997.

Produits de traitement, Les effets secondaires, La Vigne, Jan. – Fev. 1994, pp. 37-38.

1988 Cornell Chemical Recommendations for Commercial Tree Fruit Production.

2001 Cornell Pest Management Recommendations for Commercial Tree Fruit Production.

Revue Suisse Vit. Arb. Hort. 1990: vol. 22 (1), p. 75.

100

INSECT AND MITE MANAGEMENT							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
Are mancozeb products used in a way that minimizes their impact on ERM predators?	Products with the active ingredient mancozeb are known to be particularly harmful to predators of ERM. These are only used in sprays applied prior to bloom.	Regardless of the application of mancozeb in the pre-bloom period, only 1 mancozeb spray is applied in the period during or after bloom.		2 or more mancozeb sprays are applied in the period during or after bloom.			
See www.vinebalance.c	om for a discussion of the bio	blogical control of European Re	ed Mites.				

VII. PESTICIDE MANAGEMENT

This section covers procedures for safe storage, mixing and loading, and handling of pesticides to protect worker health, and avoid the potential for contamination of wells, groundwater, and ponds.

Managing mixing and loading processes to protect health and contain or avoid spills is particularly important, since pesticides are most concentrated before they are mixed in the spray tank. Simple precautions described in this section can greatly reduce the risks to worker safety and reduce the potential for spills and groundwater contamination. Use of worker protection standards (WPS) to provide worker protective equipment, signage, and decontamination sites is mandated by the Environmental Protection Agency (EPA) and the Maryland Department of Agriculture. A synopsis of Maryland pesticide applicators laws and regulations can be obtained through the University of Maryland Extension Service.

Cost-sharing through local Soil and Water Conservation Districts for improving mixing, loading, and storage facilities has assisted growers in financing improvements in the past and may be available in the future.

Photography credits: Susan Watson, Robin Hill Vineyards & Tim Stephens, MGGA member

PESTICIDE STORAGE							
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK		
What type of storage shelving is in place?	Metal or plastic, with lips to prevent tumbles, heavy containers on lowest shelves. AND Powders are stored on upper shelves, liquids on lowest shelves.		Wood covered with epoxy paint or plastic sheet, heavy containers are on high and low shelves.	Bare wood with no lip, heavy containers are on the highest shelves. OR No shelves, pesticide containers are on the floor.			
What is the condition of the floor in the pesticide storage area?	Impermeable floor (e.g. sealed concrete) with curbs or dikes to contain leaks/spills.	Impermeable floor without curbs or dikes, but containment pallets or spill-proof trays with lips are used.	Impermeable floor without curbs or dikes to contain leaks.	Permeable floor (e.g. gravel, dirt, or wood).			

Pesticide Storage						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
What security measures are taken at the storage area?	Area is locked or fenced. AND Separate from all other activities. AND Used only for pesticides. AND Posted with appropriate signage.	Area is separate from other activities. AND Used only for pesticides. AND Posted with appropriate signage.	Area is separate from other activities. AND Used only for pesticides.	Area is open to other activities that could damage containers or spill chemicals or allow entry of unwanted persons.		
What is the storage duration of pesticides?	Pesticides are purchased and used in full as needed.	Pesticides are stored during the growing season.	Pesticides are stored for two seasons.	Pesticides are stored for more than two seasons.		
What is the condition of the containers?	Original containers are clearly labeled - no holes, tears, weak seams, or missing lids/caps.		Pesticides are in their original containers but have unreadable or missing labels.	Pesticides are not in their original containers. OR Containers have rust, holes, or tears that allow chemicals to leak.		

	1 - Low Risk	2	3	4 - High Risk	YOUR RAN
What is the proximity of the mixing/loading area to wells, surface water, and watercourses?	Mixing and loading is done down slope and at least 200 ft from any well, surface water, or watercourse on an approved agrochemical mixing facility.	Mixing/loading area is done down slope and at least 100 ft from any well, surface water, or watercourse on an approved agrochemical mixing facility.	Mixing/loading area is done down slope and at least 100 ft from any well, surface water, or watercourse.	Mixing/loading is within 100 ft of a well, surface water, or watercourse.	
The NRCS AMF stand will lower the risk an	ard NY-702 requires a minimur d is suggested whenever feasi	n of 100 feet from private wel	ls or surface water-bodies	to the mixing pad. At le	ast 200 feet
ls a spill kit available?	A spill kit is readily available and fully stocked.	A spill kit is readily available but used - remaining contents depleted/unknown.	Operator has a spill kit, but it is not readily accessible.	No spill kit is available.	

LOADING AND MIXING PRACTICES						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
What type of mixing and loading area is used?	All mixing and loading is done on an impermeable pad with a curb that keeps spills contained and holds 125% of maximum chemical volume. Sumps allow collection and transfer to storage or back into sprayer for field	All mixing and loading is done on an impermeable pad without curb or sump. OR In-field mixing is done in a different location every time.	Most mixing and loading is done in the field at a different location most of the time or switched frequently.	There is no mixing/loading pad. AND Mixing and loading done in the same location every time.		
	application. The facility meets or exceeds the standards for an approved agrochemical mixing facility.					

LOADING AND MIXING PRACTICES						
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK	
What is the water	Water is obtained from a	Water is obtained from a	Water is obtained from a	Water is obtained from		
source for pesticide	well dedicated to farm use	well dedicated to farm use	well used for drinking	a well used for drinking		
applications?	and water used to fill the	and spray tanks are filled	water.	water.		
Is a proper anti-	spray tank is from a nurse	directly from the well.	OR	OR		
backflow device in	tank.	OR	Pond water filling area is	Pond water filling area		
place?	OR	Water is brought directly	< 100 ft from open water.	is adjacent to the pond.		
	Water from farm pond fills	from a pond but the filling	AND	AND		
	nurse tank at least 100 ft	area is at least 100 ft from	A RPZ device or an air gap	A RPZ device or		
	from open water (pond or	open water.	equal to twice the	suitable air gap is not in		
	stream).	AND	diameter of the filler	place.		
	AND	A RPZ device or air gap	source pipe above the	AND		
	A RPZ device is in place or	equal to twice the diameter	sprayer tank is in place to	Spray tanks are filled		
	an air gap equal to twice	of the filler source pipe	prevent backflow.	directly from the well		
	the diameter of the filler	above the sprayer tank is in	BUT	or pond.		
	source pipe above the	place to prevent backflow.	Spray tanks are filled			
	sprayer tank is installed to		directly from the well or			
	prevent backflow.		pond.			

Regulations concerning use of surface water (ponds) for filling sprayers vary. Long Island vineyards exclusively use wells or municipal water supplies. In other areas, growers commonly use water pumped from ponds, particularly where wells or municipal water supply are not available. When ponds are used as a source, the filling area should be below the grade of the pond, and at least 100 feet away from surface water. Nurse tanks are recommended, because they reduce the amount of time it takes to fill spray tanks.

An acceptable Reduced Pressure Zone (RPZ) device contains a minimum of two independently acting check valves with an automatically operated pressure differential relief valve between the two check valves.

LOADING AND MIXING PRACTICES										
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK					
Is filling supervised by a certified applicator?	A certified applicator does the mixing and loading. OR A certified applicator provides constant supervision.	A certified applicator has provided appropriate training for mixers and loaders and is available for consultation as needed.	Supervision is provided most of the time.	Supervision is provided seldom or never.						
How is the sprayer cleaned and how is rinsate disposal handled?	An in-field cleaning system is used. Rinsate is applied to labeled crops.	Sprayer is washed on a pad at the farmstead. Rinsate is applied to labeled crops.	Sprayer is washed at the farmstead (not on a pad), and rinsate is sprayed back onto the vineyard following label recommendations.	Sprayer is washed at the farmstead. Rinsate is dumped at farmstead or in field sump or adjacent to streams or waterways or is sprayed along a fence line or hedgerow.						
Is an inspection and emergency plan in place? Emergency phone numbers are required to be posted in a central location – WPS regulation.	Plumbing and well connections are inspected before each day of use for breaks and leaks. Emergency plan is centrally posted with telephone numbers. Equipment for fire or spills is reviewed and checked annually.		Plumbing and well connections are inspected only when there are breaks and leaks. Emergency plan and telephone numbers known but not posted. Equipment for fire or spills is in place but not reviewed or checked.	Plumbing and well connections are never inspected. AND/OR No emergency plan or phone numbers are in place.						

Pesticide Containers										
	1 - Low Risk	2 3		4 - High Risk	YOUR RANK					
How is the disposal of pesticide containers handled?	Triple-rinsed or power- rinsed containers are returned to a supplier for recycling. Bags are returned to a supplier, or an appropriate waste collection service is used.	Triple-rinsed containers are disposed of through an appropriate waste collection service as per label instructions.	Triple-rinsed containers are stored or disposed of on the farm.	Unrinsed containers or empty bags are stored or disposed of on the farm. OR Pesticide containers are burned on the farm.						
What type of pesticide containers is purchased?	Where available, all pesticide products are purchased in recyclable or returnable containers to reduce the number of empty containers that require disposal.	Some pesticide products are purchased in recyclable or returnable containers.	Most pesticides are purchased in containers that require special handling or treatment before disposal.							

PESTICIDE USE									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
What is done with unwanted or banned pesticides?	Participate in an EPA/DEC "return" program, and unused pesticides are returned to a dealer or disposed of through a hazardous waste collection service.			Unused pesticides are disposed of on your property or at a local garbage dump. OR Unused pesticides are stored indefinitely on the farm.					

PESTICIDE USE									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
What is the distance	Label restrictions are followed,		Spray is applied less	Spray is applied					
of spray application	or if not stated on label, spray is		than 35 ft from an open	adjacent to or over top					
from water bodies?	applied at least 35 ft from open		water source.	of open water.					
	water source.								
How well are	Pesticide use records include:	Pesticide use records		No records are kept.					
pesticide records	Pesticides used	include only records		Chemicals used are					
kept?	 EPA registration # 	necessary for DEC		known by memory or					
	Where applied	reporting:		through invoices only.					
	• Date applied	 Pesticides used 							
	 Quantity applied 	 EPA registration # 							
	 Rates applied 	 Where applied 							
	 Method of application 	 Date applied 							
	 Applicator's name 	 Quantity applied 							
	• Target pest	 Rates applied 							
	AND	Method of application							
	 Weather conditions 	 Applicator's name 							
	 Stage of crop development 	 Target pest 							
	 Stage of pest development 								
	 Apparent effectiveness 								

VIII. CONTINUING EDUCATION

Vineyard management practices are constantly changing. New techniques, crop protection materials, and research results can and should influence your practices. Continuing education is important, because it facilitates the flow of research-based information, allows for exchange of ideas among growers, and helps growers understand how agricultural practices influence the environment and their community.

This section addresses what information sources, references, and educational venues growers can use to keep up to date with new ideas and practices.

Photography credit: Tim Stephens, MGGA member

CONTINUING EDUCATION										
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK					
Does the Vineyard Manager have these essential publications?	Grower has at least 4 of these suggested or similar publications: • Wine Grape Production Guide for Eastern North America • NY/PA Pest Management Guidelines for Grapes – latest ed. • Compendium of Grape Diseases • Cornell University Disease and Insect fact sheets • 2015 New York and Pennsylvania Pest Management Guidelines for Grapes (Web) • Pest Management Strategic Plan for Wine Grapes in Virginia and North Carolina	Grower has 3 of the suggested publications.	Grower has 2 of the suggested publications.	Grower has 1 or none of the suggested publications.						

SUSTAINABLE VITICULTURE • CONTINUING EDUCATION

CONTINUING EDUCATION									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
Does the Vineyard	Grower has all 4 or more	Grower has 3	Grower has 2	Grower has 1 or none					
Manager have these	significant viticultural	significant viticultural	significant viticultural	of the additional					
useful publications?	publications, including but not limited to: • Grape Pest Management – 2nd ed. • Wine Grape Production Guide for Eastern North America • A Pocket Guide for Grape IPM Scouting in the North Central and Eastern United States • Grape IPM in the Northeast	publications.	publications.	viticultural publications.					

CONTINUING EDUCATION									
	1 - Low Risk	2	3	4 - High Risk	YOUR RANK				
Does the Vineyard Manager subscribe to industry newsletters?	Vineyard Manager subscribes to 2 or more Grape Industry newsletters.	Vineyard Manager subscribes to 1 newsletter, preferably the regional newsletter.		Vineyard Manager subscribes to no newsletters.					
Does the Vineyard Manager subscribe to trade magazines?	Vineyard Manager subscribes to 3 or more grape industry magazines, either print or online, including but not limited to: • Practical Winery and Vineyard • Vineyard and Winery Management • Wine Business Monthly • Wines and Vines	Vineyard Manager subscribes to 1-2 grape industry magazines.		Vineyard Manager subscribes to no industry magazines.					

CONTINUING EDUCATION										
	1 - Low Risk	2	2 3		YOUR RANK					
Does the Vineyard Manager attend grower meetings?	Vineyard Manager attends all regional grower meetings every season as well as at least 1 outside the region.	Vineyard Manager attends at least 2 regional grower meetings per season.	Vineyard Manager attends at least 1 regional grower meeting per season.	Vineyard Manager does not attend any grower meetings.						
Does the Vineyard Manager attend other meetings specifically pest or pesticide management?	Vineyard Manager attends all WPS/pesticide compliance meetings or other pest management meetings every year. AND Vineyard Manager is enrolled in the local extension program.	Vineyard Manager attends at least 2 WPS/pesticide compliance meetings or other pest management meeting per year.	Vineyard Manager occasionally attends pest and pesticide management meetings, but not every year.	Vineyard Manager has not attended any additional pest management, WPS, or pesticide regulation meetings.						

ACTION PLANS

Upon completion of the workbook, the next step is to develop an action plan based on the results of your self-assessment that will address the practices that you believe you can effectively modify within the financial and management capacity of your farm. Concentrate on the issues that you assessed as a "3" or "4", with the goal of reaching the more sustainable "1" or "2" rating for that practice. If there are practices that you assessed a "2" that you feel you can easily climb to a "1", include those as well. The action plan is yours, and only you will know what is practical and possible on your farm.

Below you will find an Action Plan Template that includes an example of a practice to be modified. All of the practices that you assessed a "3" or "4" should be listed on the template. For each potential action in your action plan, you must (1) decide if you want to take action on that specific practice (Action Y/N), (2) determine what you want to do in regard to that action (Goals), (3) organize your steps along the road to adoption of the modified practice (Action Steps), and (4) provide a timeline for completion (Timetable). The template also contains space for the completion dates of your action steps as well as space for any pertinent notes regarding your proposed action. It is important that your action plan details all of this information in order to fulfill the requirements for potential cost-sharing opportunities with your Soil and Water Conservation District (SWCD) and Natural Resources Conservation Service (NRCS) offices. The second page of the action plan template is left blank and can be photocopied as necessary to include all of the practices that you assessed a "3" or "4".

Extension personnel from your regional grape program will provide as much assistance as you desire. In addition, your local Soil and Water Conservation District office is equipped to aid action plan development and educate you on possible cost-sharing opportunities for actions in your plan. After you have completed the workbook and are prepared to construct an action plan, contact your grape and Soil and Water Conservation District programs to take advantage of the guidance available to you.

EXAMPLE ACTION PLAN

Section (Page)	Торіс	Score	Action (Y/N)	Goals	Action Steps	Timetable	Date Complete	Notes
EXAMPLE								
Nutrition	Consideration of	4	Y	$4 \rightarrow 1$: Experiment	1. Establish cover crop	1. Fall 2016	1	Will
(Page 38)	Nitrogen (N)			with cover crops to	research plots			experiment with legumes
(1 uge 30)	from organic			increase soil health &	2. Calculate cover crop N	2. Spring 2017	2	cereal rye, and
	sources			take up water in the spring	contribution			other cover crops
					3. Develop & implement vineyard-wide plan	3. 2017-2018	3	

ACTION PLAN TEMPLATE

Section (Page)	Торіс	Score	Action (Y/N)	Goals	Action Steps	Timetable	Date Complete	Notes

REFERENCES

- Brady, N.C. and R.R. Weil. 1996. *The Nature and Properties of Soils.* Prentiss Hall, Upper Saddle River, New Jersey. 740pp.
- Flaherty, D.L., F.L. Jensen, A.N. Kasimatis, H. Kido and W.J. Moller. 1981. *Grape Pest Management*. Division of Agricultural Sciences, University of California, Publication No. 4105. 312pp.
- Ohmart, C.P. and S.K. Matthiasson. 2000. *Lodi Winegrower's Workbook: A Self-assessment of Integrated Farming Practices*. Lodi-Woodbridge Winegrape Commission, Lodi, CA. 145pp.
- Pearson, R.C. and A.C. Goheen (eds.). 1988. *Compendium of Grape Diseases.* The American Phytopathological Society Press. 93pp.
- Phillips, C.E. 1956. *Weeds of the Northeast*. Delaware Agricultural Experimental Station Field Manual. 1(80).
- Smart, R. and M. Robinson. 1991. *Sunlight into Wine: A Handbook for Winegrape Canopy Management*. Winetitles, Adelaide, Australia. 88pp.
- Sustainable Agriculture Network. 1998. *Managing Cover Crops Profitably.* Sustainable Agriculture Network, Beltsville, MD. 212pp.
- Weigle, T. and J. Kovach. 1995. *Grape IPM in the Northeast.* New York State Integrated Pest Management Program, Number 211.
- Weigle, T.H. and A.J. Muza (eds.). 2006. 2006 New York and Pennsylvania Pest Management Guidelines for Grapes. A Cornell and Penn State Cooperative Extension publication. 93pp.
- Zak, D.R., W.E. Holmes, D.C. White, A.D. Peacock and D. Tilman. 2003. Plant Diversity, Soil Microbial Communities, and Ecosystem Function: Are There Any Links? *Ecology*. 84(8):2042-2050.

Photography credit: Tim Stephens, MGGA member

